
- •Краткий курс сопротивления материалов
- •Часть 2 Глава 1. Перемещения балок при изгибе
- •1.1. Дифференциальное уравнение изогнутой оси балки
- •Итак, две величины υ и θ являются компонентами перемещения произвольного поперечного сечения балки.
- •1.2. Интегрирование дифференциального уравнения изогнутой оси балки
- •1.3. Метод начальных параметров
- •1.4. Энергетические теоремы
- •Понятие о действительном и возможном перемещениях. Работа внешних сил
- •Потенциальная энергия стержня.
- •1.5. Метод Мора
- •1.6. Графический способ вычисления интеграла Мора – способ Верещагина
- •Глава 2. Статически неопределимые балки
- •2.1. Общие понятия
- •2.2. Расчёт методом сил
- •2.3. Многопролётные неразрезные балки
- •Глава 3. Сложное сопротивление прямого бруса
- •3.1. Общие понятия
- •3.2. Косой изгиб
- •3.3. Косой изгиб с растяжением (сжатием)
- •3.4. Внецентренное растяжение (сжатие)
- •3.5. Изгиб с кручением круглого стержня
- •3.6. Изгиб с кручением прямоугольного стержня
- •Глава 4. Устойчивость сжатых стержней
- •4.1. Основные понятия
- •4.2. Определение критической силы методом Эйлера
- •4.3. Зависимость критической силы от способа закрепления концов стержня
- •4.4. Пределы применимости формулы Эйлера. Кривая критических напряжений
- •4.5. Расчёт на устойчивость по допускаемому напряжению
- •4.6. Пример расчёта
- •Определение размеров поперечного сечения
- •Определение грузоподъёмности
- •4.7. О выборе материала и рациональных форм поперечных сечений для сжатых стержней
- •Глава 5. Прочность при повторно-переменных (циклических) напряжениях
- •5.1. Основные понятия. Механизм разрушения
- •5.2. Характеристики цикла. Виды циклов
- •5.3. Экспериментальное определение характеристик сопротивления усталости
- •5.4. Влияние конструктивно-технологических факторов на усталостную прочность
- •5.4.1. Влияние концентрации напряжений
- •5.4.2. Влияние абсолютных размеров детали
- •5.4.3. Влияние состояния поверхности
- •5.5. Расчёт на прочность при линейном напряжённом состоянии и симметричном цикле
- •5.6. Расчёт на прочность при линейном напряжённом состоянии и несимметричном цикле
- •5.7. Расчёт на прочность при плоском напряжённом состоянии
- •Глава 6. Расчёты прочности при динамических нагрузках
- •6.1. Общая характеристика динамических задач
- •6.2. Напряжения в тросе при равноускоренном подъёме груза
- •6.3. Напряжения в тонком кольце при вращении с постоянной скоростью
- •6.4. Характеристики колебательных процессов
- •6.4.1. Число степеней свободы
- •6.4.2. Типы сил
- •6.4.3. Классификация колебаний
- •6.5. Свободные незатухающие колебания системы с одной степенью свободы
- •6.5.1. Поперечные и продольные колебания
- •6.5.2. Крутильные колебания
- •6.6. Свободные затухающие колебания системы с одной степенью свободы
- •6.7. Вынужденные колебания системы с одной степенью свободы при действии периодической возмущающей силы
- •6.7.1. Без учёта затухания
- •6.7.2. С учётом затухания
- •6.8. Критическая частота вращения вала
- •6.9. Приближённое определение частоты собственных колебаний систем со многими степенями свободы
- •6.10. Расчёт на удар
- •6.10.1. Продольный и поперечный удар
- •6.10.2. Скручивающий удар
- •Оглавление
1.6. Графический способ вычисления интеграла Мора – способ Верещагина
Упрощение операции интегрирования
основано на том, что эпюры от единичных
усилий на прямолинейных участках
оказываются линейными. Рассмотрим эту
процедуру применительно к участку
балки. На рис.1.16 сверху показан участок
балки с эпюрой Мр общего
вида, а внизу эпюра
,
представляющая линейную функцию.
Преобразуем интеграл Мора
(а)
с учётом этой особенности. Как видно из
верхнего чертежа, Мрdx
= dω, а из нижнего
чертежа имеем
.
Если кроме того считать, что жёсткость
EI на протяжении участка
постоянна, вместо (а) будем иметь
. (б)
Интеграл
представляет собой статический момент
площади эпюры Мр относительно
оси у. Его можно записать иначе
Sy = ω ∙ xc ,
где ω – площадь этой эпюры Мр;
хс – координата центра тяжести эпюры Мр.
Рис.1.16
Отметив на нижней эпюре соответствующую ординату и обозначив её буквой m, будем иметь
xctg α = m.
В результате подстановки этих выражений в (б) получим
. (в)
Если балка имеет несколько участков по длине, формула Верещагина будет иметь вид
, (1.27)
где ∆ – обобщённое перемещение (либо прогиб υ, либо угол поворота θ);
ωi – площадь эпюры моментов от внешней нагрузки (грузовой эпюры);
mi – ордината единичной эпюры под центром тяжести грузовой эпюры;
n – число участков по длине балки.
Если вычисляется прогиб, то к ненагруженной
балке в искомой точке по направлению
прогиба прикладывается единичная сила
и строится эпюра моментов (единичная
эпюра). Если вычисляется угол поворота,
то в этой точки прикладывается единичный
момент
.
При пользовании этой формулой надо уметь вычислять площади и координаты центров тяжести основных фигур: прямоугольника, прямолинейного треугольника и криволинейного треугольника. Минимально необходимые справочные данные приведены в табл.1.1. Процедуру графического вычисления называют «перемножением» эпюр.
В случае, если эпюра Мр тоже линейная, операция перемножения обладает свойством коммутативности: безразлично, умножается ли площадь грузовой эпюры на ординату единичной или площадь единичной на ординату грузовой.
Встречающиеся на практике эпюры могут быть, как правило, разбиты на простые фигуры, приведённые в табл.1.1.
Таблица 1.1
Эпюры Мр и |
Площадь грузовой опоры |
Ордината единичной эпюры |
|
|
|
|
|
|
|
|
|
|
|
|
Примечание: параболы – квадратные.
В качестве примера рассмотрим уже рассчитанную балку на рис.1.13. Чтобы построить эпюры Мр и , можно не определять опорные реакции: достаточно сосчитать момент на опоре В от нагрузки на консоли, построить эпюру на консоли, а затем соединить прямой линией значение М на опоре В с нулём на опоре А (рис.1.17).
В соответствии с формулой (1.27)
.
Конечно, результат получился такой же, что и при интегрировании по формуле Мора, но с меньшими затратами труда.
Рис.1.17
Глава 2. Статически неопределимые балки
2.1. Общие понятия
Изложенные в предыдущей главе методы определения перемещений широко применяются в расчётах статически неопределимых балок. Если при проектировании длинных балок (мостов, валов турбин) условия прочности и (или) жёсткости не выполняются, можно увеличить сечение балки, а можно поставить дополнительные опоры в пролёте (рис.2.1,б). Второй путь очень часто оказывается предпочтительным, так как позволяет, не увеличивая вес конструкции, сделать её более жёсткой.
а
|
|
б |
Рис.2.1
Балка с промежуточными опорами становится статически неопределимой, так как трёх уравнений статики уже недостаточно для определения пяти неизвестных реакций.
Напомним, что простую статически неопределимую систему, образованную из стержней, работающих на растяжение-сжатие, мы рассматривали в разделе 2.5 первой части курса. Дополнительное уравнение для определения продольных сил в стержнях – уравнение совместности деформаций – было получено из рассмотрения схемы деформирования системы. Аналогичным по существу методом рассчитываются статически неопределимые балки.
Степень статической неопределимости определяется числом «лишних» связей. Балка на рис.2.1,б имеет две «лишних» промежуточных опоры – их можно удалить без ущерба для равновесия. Степень статической неопределимости этой балки равна двум.