Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные термодинамические процессы.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
937.47 Кб
Скачать

Второй закон термодинамики

Второй закон термодинамики устанавливает направление протекания самопроизвольных тепловых процессов в природе и определяет условия превращения теплоты в работу. Закон утверждает, что теплота в природе самопроизвольно переходит только от тел более нагретых к менее нагретым.

В соответствии с этим для превращения теплоты в работу в любом тепловом двигателе необходимо иметь два тела с различными температурами. Более нагретое тело будет источником теплоты для получения работы, менее нагретое — теплоприемником. При этом к.п.д. теплового двигателя всегда будет меньше единицы.

Термический к.п.д. теплового двигателя — t = 1 – Q2 / Q1, где Q1 и Q2 соответственно теплота, подведённая в цикле и отведённая теплоприемнику.

Для идеального цикла теплового двигателя, то есть для прямого обратимого цикла Карно — tк = 1 – Т2 / Т1 = 1 – Т мин / Т макс,

где Т1 = Т макс — температура горячего источника теплоты;

Т2 = Т мин — температура холодного источника теплоты или теплоприемника.

Термический к.п.д. любого реального цикла теплового двигателя всегда меньше термического к.п.д. цикла Карно для того же интервала температур.

Энтропия

Важнейшим параметром состояния вещества является энтропия (S). Изменение энтропии в обратимом термодинамическом процессе определяется уравнением, являющимся аналитическим выражением второго закона термодинамики:

d S = dQ /  Т

для 1 кг вещества — d s = d q / Т, где d q — бесконечно малое количество теплоты, подводимой или отводимой в элементарном процессе при температуре Т, кДж / кг.

Первым энтропию заметил Клаузиус (1876). Обнаружив в природе новую, ранее не известную никому величину Клаузиус назвал ее странным и непонятным словом «энтропия», которое сам и придумал. Он так объяснил его значение«тропе» по-гречески означает «превращение». К этому корню Клаузиус добавил две буквы – «эн», так чтобы получившееся слово было бы по возможности подобно слову «энергия». Обе величины настолько близки друг другу своей физической значимостью, что известное сходство в их названиях было целесообразно.

Энтропия — это производное понятие от понятия “состояние объекта” или “фазовое пространство объекта”. Она характеризует степень вариативности микросостояния объекта. Качественно, чем выше энтропия, тем в большем числе существенно различных микросостояний может находиться объект при данном макросостоянии.

Можно дать другое определение, не такое строгое и точное, но более наглядное: ЭНТРОПИЯ — это мера обесцененной энергии, бесполезной энергии, которую нельзя использовать для получения работы, или

ТЕПЛОТА — царица мира, ЭНТРОПИЯ — её тень.

Все реальные процессы, протекающие в действительности — необратимы. Их нельзя по желанию провести в прямом и обратном направлении, не оставив никакого следа в окружающем мире. Термодинамика должна помочь исследователям заранее узнать, пойдет ли реальный процесс, не осуществляя его в действительности. Для этого и нужно понятие «энтропия».

Энтропия — это свойство системы, которое полностью определяется состоянием системы. Какими бы путями не перешла система из одного состояния в другое, изменение её энтропии будет всегда одно и тоже.

Вычислить вообще энтропию системы или любого тела нельзя, как нельзя вообще определить его энергию. Вычислить можно только изменение энтропии при переходе системы из одного состояния в другое, если этот переход провести квазистатическим путём.

Специального названия для единиц, в которых измеряют энтропию, не придумано. Ее измеряют в Дж/кг*градус.

Уравнение Клаузиуса:

ΔS =  S2 – S1 = ∑(Q/T) обратимый

Изменение энтропии при переходе системы из одного состояния в другое точно равно сумме приведенных теплот.

Энтропия — мера статистического беспорядка в замкнутой термодинамической системе. Чем больше порядка — тем меньше энтропия. И наоборот, чем меньше порядка — тем больше энтропия.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния (Больцман).

Энтропия является функцией состояния, поэтому её изменение в термодинамическом процессе определяется только начальными и конечными значениями параметров состояния.

Изменение энтропии в основных термодинамических процессах определяется:

В изохорном Ѕv = Сv ln Т21

В изобарном Ѕр = Ср ln Т21

В изотермическом Ѕт = R ln Р1= R ln V2/V1