
- •Федеральное агентство по образованию
- •М.Я. Кордон, в.И. Симакин, и.Д. Горешник гидравлика
- •Часть I. Гидравлика
- •1 Основные физические свойства жидкостей
- •1.1. Модель сплошной среды
- •1.2. Плотность жидкости
- •1.3. Сжимаемость капельной жидкости
- •1.4. Температурное расширение капельных жидкостей
- •1.5. Вязкость жидкости
- •1.6. Испаряемость жидкости
- •1.7. Растворяемость газов в жидкостях
- •Примеры
- •Контрольные вопросы
- •2. Основы гидростатики
- •2.1. Основные сведения
- •2.2. Гидростатическое давление
- •2.3. Основная теорема гидростатики
- •2.4. Условие равновесия жидкости
- •2.5. Дифференциальное уравнение равновесия жидкости (Уравнение Эйлера)
- •2.6. Основное дифференциальное уравнение гидростатики
- •Контрольные вопросы
- •2.7. Поверхность уровня
- •2.8. Равновесие жидкости в поле земного тяготения
- •2.9. Основное уравнения равновесия жидкости в поле земного тяготения. Закон Паскаля
- •Примеры
- •Контрольные вопросы
- •2.10. Относительное равновесие жидкости в поле сил тяготения
- •2.11. Приборы для измерения давления
- •2.15. Равновесие тела в покоящейся жидкости. Закон Архимеда
- •Примеры
- •Контрольные вопросы
- •3. Основы кинематики и динамики жидкости
- •3.1. Основные понятия и определения кинематики и динамики жидкости
- •3.2. Гидравлические элементы потока
- •3.3. Геометрические характеристики потока
- •3.4. Трубка тока и элементарная струйка
- •3.5. Расход и средняя скорость потока
- •3.6. Условие неразрывности, или сплошности движения жидкости
- •3.7. Методы исследования движения жидкости
- •3.8. Уравнение Эйлера
- •Контрольные вопросы
- •3.9. Интегрирование уравнения Эйлера для установившегося движения жидкости
- •3.10. Уравнение Бернулли для потока реальной жидкости
- •3.11. Практическое применение уравнения Бернулли
- •Примеры
- •Контрольные вопросы
- •3.12. Гидравлические сопротивления. Режимы движения жидкости
- •3.13. Потери напора при равномерном движении
- •3.14. Способы определения потерь напора при равномерном движении жидкости
- •3.15. Местные гидравлические сопротивления
- •Примеры
- •Контрольные вопросы
- •4. Гидравлический расчет истечения жидкостей
- •4.1. Общая характеристика истечения
- •4.2. Истечение жидкости из отверстия в тонкой стенке
- •4.3. Истечение при переменном напоре
- •Примеры
- •Контрольные вопросы
- •4.4. Истечение жидкости через насадки
- •4.5. Зависимость коэффициентов истечения от числа Рейнольдса
- •4.6. Вакуум в цилиндрическом насадке
- •4.7. Практическое применение насадков
- •Примеры
- •Контрольные вопросы
- •5. Гидравлический удар в трубах
- •5.1. Физическая сущность гидравлического удара
- •5.2. Определение ударного давления и скорости распространения ударной волны
- •5.3. Способы гашения и примеры использования гидравлического удара
- •Примеры
- •Контрольные вопросы
- •6. Гидравлический расчет трубопроводов
- •6.1. Классификация трубопроводов
- •6.2. Система уравнений и задачи гидравлического расчета трубопроводов
- •6.3. Метод расчета простых трубопроводов
- •6.4. Методы расчета сложных трубопроводов
- •6.4.1. Методы расчета по удельным гидравлическим сопротивлениям
- •7. Основы теории подобия, моделирования и анализа размерностей
- •7.1. Основные положения
- •7.2. Законы механического подобия
- •7.2.1. Геометрическое подобие
- •7.2.2. Кинематическое подобие
- •7.2.3. Динамическое подобие
- •7.3. Гидродинамические критерии подобия
- •Контрольные вопросы
- •7.4. Физическое моделирование
- •Примеры
- •7.5. Анализ размерностей. -теорема
- •Примеры
- •Для второго -члена имеем
- •Контрольные вопросы
- •8. Основы движения грунтовых вод и двухфазных потоков
- •8.1. Движение грунтовых вод. Основные понятия движения грунтовых вод.
- •8.2. Скорость фильтрации. Формула Дарси
- •8.3. Коэффициент фильтрации и методы его определения
- •8.4. Ламинарная и турбулентная фильтрация
- •8.6. Фильтрация через однородную земляную среду
- •8.7. Особенности гидравлики двухфазных потоков
- •8.7.1. Виды течений двухфазных потоков жидкости и газа
- •Тогда объемный расход смеси равен сумме объемных расходов фаз:
- •В одномерном приближении можно записать:
- •Истинная скорость жидкой фазы равна:
- •Величины и называются приведенными скоростями фаз.
- •8.7.3. Истинное объемное паросодержание адиабатных двухфазных потоков.
- •8.7.4. Гидравлическое сопротивление двухфазных потоков
1.5. Вязкость жидкости
Вязкостью называется стремление жидкостей к сдвигу. Если к пластине (рис. 1.1) приложить силу F, то после некоторого интервала времени установится равномерное движение с некоторой скоростью U0.
Рис. 1.1
За время разгона возникла сила вязкости Fm = –F. Причем, вследствие межмолекулярных связей, слой жидкости, прилегающей к пластине, движется вместе с пластиной со скоростью U0. Предположим, что распределение скоростей по высоте носит линейный характер: U = f(z), тогда
, (1.9а)
где m – |
динамический коэффициент вязкости; |
S – |
площадь соприкасающихся слоев; |
|
градиент скорости (показатель интенсивности ее изменения по нормали). Знак (+) или (-) выбирают в зависимости от знака градиента скорости и направления силы Fm. |
Между слоями жидкости, движущимися со скоростями, отличающимися друг от друга на величину dU, возникает касательное напряжение t:
. (1.10)
Размерность m
[m] =
.
Единица измерения
.
Отношение
динамической вязкости к плотности
называется
кинематической вязкостью жидкости:
. (1.11)
Размерность
.
Единица измерения
.
Связь кинематической и динамической вязкости с плотностью и температурой воды находится из выражений (1.9) и (1.11):
. (1.12)
Так, для чистой пресной воды зависимость динамической вязкости от температуры определяется по формуле Пуазейля:
. (1.13)
Решая совместно уравнения (1.12) и (1.13), получим:
. (1.14)
На практике вязкость жидкостей определяется вискозиметрами, из которых наиболее широкое распространение получил вискозиметр Энглера.
Для перехода от условий вязкости в градусах Энглера к кинематической вязкости в м2/с применяется несколько эмпирических формул, например формула Убеллоде:
, (1.15)
а также теоретическая формула А.Д. Альтшуля:
, (1.16)
где n – |
кинематическая вязкость жидкости, см2/с. |
Кроме обычных (ньютоновских) жидкостей, характеризующихся зависимостью (1.10), существуют аномальные жидкости, к которым относятся коллоидные растворы, смазочные масла, нефтепродукты.
Для таких жидкостей закон внутреннего трения выражается в виде
, (1.17)
где t0 – |
касательное напряжение в покоящейся жидкости, после преодоления которой жидкость приходит в движение. |
1.6. Испаряемость жидкости
Показателем испаряемости является температура ее кипения при нормальном атмосферном давлении.
Чем выше температура кипения, тем меньше испаряемость.
Более полной характеристикой испаряемости является давление (упругость) насыщенных паров pн, выраженная в функции температуры.
Чем больше давление насыщенных паров при данной температуре, тем больше испаряемость жидкости.
Для многокомпонентных жидкостей (например, для бензина и др.) давление рн зависит не только от физико-химических свойств и температуры, но и от соотношения объемов жидкой и паровой фаз.
Давление насыщенных паров возрастает с увеличением части объема жидкой фазы.
Значения упругости паров для таких жидкостей даются для отношения паровой и жидкой фаз, равного 1:4.