
- •Федеральное агентство по образованию
- •М.Я. Кордон, в.И. Симакин, и.Д. Горешник гидравлика
- •Часть I. Гидравлика
- •1 Основные физические свойства жидкостей
- •1.1. Модель сплошной среды
- •1.2. Плотность жидкости
- •1.3. Сжимаемость капельной жидкости
- •1.4. Температурное расширение капельных жидкостей
- •1.5. Вязкость жидкости
- •1.6. Испаряемость жидкости
- •1.7. Растворяемость газов в жидкостях
- •Примеры
- •Контрольные вопросы
- •2. Основы гидростатики
- •2.1. Основные сведения
- •2.2. Гидростатическое давление
- •2.3. Основная теорема гидростатики
- •2.4. Условие равновесия жидкости
- •2.5. Дифференциальное уравнение равновесия жидкости (Уравнение Эйлера)
- •2.6. Основное дифференциальное уравнение гидростатики
- •Контрольные вопросы
- •2.7. Поверхность уровня
- •2.8. Равновесие жидкости в поле земного тяготения
- •2.9. Основное уравнения равновесия жидкости в поле земного тяготения. Закон Паскаля
- •Примеры
- •Контрольные вопросы
- •2.10. Относительное равновесие жидкости в поле сил тяготения
- •2.11. Приборы для измерения давления
- •2.15. Равновесие тела в покоящейся жидкости. Закон Архимеда
- •Примеры
- •Контрольные вопросы
- •3. Основы кинематики и динамики жидкости
- •3.1. Основные понятия и определения кинематики и динамики жидкости
- •3.2. Гидравлические элементы потока
- •3.3. Геометрические характеристики потока
- •3.4. Трубка тока и элементарная струйка
- •3.5. Расход и средняя скорость потока
- •3.6. Условие неразрывности, или сплошности движения жидкости
- •3.7. Методы исследования движения жидкости
- •3.8. Уравнение Эйлера
- •Контрольные вопросы
- •3.9. Интегрирование уравнения Эйлера для установившегося движения жидкости
- •3.10. Уравнение Бернулли для потока реальной жидкости
- •3.11. Практическое применение уравнения Бернулли
- •Примеры
- •Контрольные вопросы
- •3.12. Гидравлические сопротивления. Режимы движения жидкости
- •3.13. Потери напора при равномерном движении
- •3.14. Способы определения потерь напора при равномерном движении жидкости
- •3.15. Местные гидравлические сопротивления
- •Примеры
- •Контрольные вопросы
- •4. Гидравлический расчет истечения жидкостей
- •4.1. Общая характеристика истечения
- •4.2. Истечение жидкости из отверстия в тонкой стенке
- •4.3. Истечение при переменном напоре
- •Примеры
- •Контрольные вопросы
- •4.4. Истечение жидкости через насадки
- •4.5. Зависимость коэффициентов истечения от числа Рейнольдса
- •4.6. Вакуум в цилиндрическом насадке
- •4.7. Практическое применение насадков
- •Примеры
- •Контрольные вопросы
- •5. Гидравлический удар в трубах
- •5.1. Физическая сущность гидравлического удара
- •5.2. Определение ударного давления и скорости распространения ударной волны
- •5.3. Способы гашения и примеры использования гидравлического удара
- •Примеры
- •Контрольные вопросы
- •6. Гидравлический расчет трубопроводов
- •6.1. Классификация трубопроводов
- •6.2. Система уравнений и задачи гидравлического расчета трубопроводов
- •6.3. Метод расчета простых трубопроводов
- •6.4. Методы расчета сложных трубопроводов
- •6.4.1. Методы расчета по удельным гидравлическим сопротивлениям
- •7. Основы теории подобия, моделирования и анализа размерностей
- •7.1. Основные положения
- •7.2. Законы механического подобия
- •7.2.1. Геометрическое подобие
- •7.2.2. Кинематическое подобие
- •7.2.3. Динамическое подобие
- •7.3. Гидродинамические критерии подобия
- •Контрольные вопросы
- •7.4. Физическое моделирование
- •Примеры
- •7.5. Анализ размерностей. -теорема
- •Примеры
- •Для второго -члена имеем
- •Контрольные вопросы
- •8. Основы движения грунтовых вод и двухфазных потоков
- •8.1. Движение грунтовых вод. Основные понятия движения грунтовых вод.
- •8.2. Скорость фильтрации. Формула Дарси
- •8.3. Коэффициент фильтрации и методы его определения
- •8.4. Ламинарная и турбулентная фильтрация
- •8.6. Фильтрация через однородную земляную среду
- •8.7. Особенности гидравлики двухфазных потоков
- •8.7.1. Виды течений двухфазных потоков жидкости и газа
- •Тогда объемный расход смеси равен сумме объемных расходов фаз:
- •В одномерном приближении можно записать:
- •Истинная скорость жидкой фазы равна:
- •Величины и называются приведенными скоростями фаз.
- •8.7.3. Истинное объемное паросодержание адиабатных двухфазных потоков.
- •8.7.4. Гидравлическое сопротивление двухфазных потоков
3.14. Способы определения потерь напора при равномерном движении жидкости
Основной формулой при расчёте напорных трубопроводов является формула Дарси-Вейсбаха:
,
а при расчёте течений в открытых руслах – формула Шези:
.
Применение этих формул связано с определением коэффициентов и С.
При ламинарном движении жидкости коэффициент для труб определяется по формуле
. (3.43)
Впервые наиболее исчерпывающие данные о значении были получены Никурадзе. Результаты показаны на рис. 3.19.
Рис. 3.19
В пределах прямой
1 коэффициент
зависит не от шероховатости стенок
трубы, а от числа Re (см. формулу 3.43). Прямая
2 представляет зависимость
для гидравлических гладких труб, у
которых шероховатость меньше толщины
ламинарного пристенного слоя.
Коэффициент для гидравлических гладких труб определяется по формуле Блазиуса (прямая 2):
(3.44)
Между линиями 2 и линией 3 слева располагается зона А, в которой зависит как от числа Рейнольдса, так и от шероховатости поверхности стенок труб.
Для определения в этой области может применяться формула А. Д. Альтшуля:
, (3.45)
где kэ – |
эквивалентная равномерно зернистая шероховатость, определяемая опытным путем. |
В области Б коэффициент зависит только от шероховатости.
Для определения в этой области рекомендуется формула Никурадзе
, (3.46)
где r – |
радиус трубы; |
– |
абсолютная шероховатость стенок трубы. |
Сущеструют формулы Ф. А. Шевелёва, Н. З. Френкеля, Л. А. Тепакса, Б. Н. Шифринсона, Н. Ф. Фёдорова и других.
3.15. Местные гидравлические сопротивления
Местные сопротивления вызываются фасонными частями, арматурой и другими элементами трубопровода. При движении жидкости на местных сопротивлениях изменяется величина и направление скорости.
Потери, связанные с преодолением местных сопротивлений, пропорциональны кинетической энергии потока:
, (3.47)
где м – |
коэффициент местных сопротивлений зависит не только от вязкости и скорости движения основного потока, но главным образом от геометрической формы и размеров сопротивления. |
При турбулентном режиме движения жидкости потери hм зависят только от геометрических характеристик сопротивления.
Рассмотрим вопрос о потере напора при внезапном расширении трубопровода (рис. 3.20). Часть энергии в этом случае расходуется на сложное циркуляционное движение жидкости в кольцевом пространстве между струёй и стенками трубы за сечением 1–1.
Рис. 3.20
Вследствие отрыва потока и связанного с ним вихреобразования на участке трубы между сечениями 1–1 и 2–2 наблюдаются значительные потери напора.
Учитывая, что давление на торцевой стенке АВ практически равно давлению на выходе из узкой части трубы р1, найдём величину потерь по уравнению Бернулли:
(3.48)
Из теоремы импульсов для сечений 1–1 и 2–2 можно записать:
. (3.49)
Пренебрегая
силами трения на участке 1–2 и учитывая,
что
,
после деления на
обеих частей уравнения (3.49) получим:
или
. (3.50)
Подставляя выражение (3.50) в уравнение (3.48), найдём:
или
. (3.51)
То есть, потери напора при внезапном расширении равны скоростному напору от потерянной скорости. Выражение (3.51) называется теоремой, или формулой Борда.
Формулу (3.51) можно привести к виду:
.
С учётом того, что
11
=
22
и
,
получим:
– относится к
скорости
1;
–
относится к
скорости
2.
Суммарные потери
напора в трубопроводе постоянного
диаметра
.