
- •Часть 1. Металлургия цинка
- •1.1. Общие сведения
- •1.2. Методы переработки цинксодержащего сырья
- •1.3. Окислительный обжиг сульфидных цинковых концентратов
- •Температура воспламенения некоторых сульфидов в зависимости от размера их частиц (по и.И. Пензимонжу), с
- •1.4. Дистилляция цинка
- •1.5. Рафинирование чернового цинка
- •1.6. Выщелачивание цинкового огарка
- •1.7. Очистка цинксодержащих растворов от примесей
- •1.8. Электролиз раствора сульфата цинка и переплавка катодного цинка
- •1.9. Переработка цинковых кеков
- •1.10. Переработка медно-кадмиевых кеков
- •Часть 2. Металлургия свинца
- •2.1. Общие сведения
- •2.2. Методы переработки свинецсодержащего сырья
- •2.3. Выплавка свинца реакционным способом
- •2.4. Агломерирующий обжиг свинцовых концентратов
- •2.5. Шахтная плавка свинцового агломерата
- •2.6. Автогенные процессы
- •2.7. Рафинирование чернового свинца
- •2.7.1. ОгнеВой метод
- •2.7.2. ЭлектролИзный процесс
- •2.8. Переработка цинксодержащих шлаков
- •Рекомендательный библиографический список
- •Оглавление
1.7. Очистка цинксодержащих растворов от примесей
Нейтральный цинксодержащий раствор, получаемый в результате полного завершения процесса выщелачивания цинкового огарка, содержит ряд примесей, мг/дм3: Cu 300-1800; Cd 250-700; Fe2+ 8-30; (Fe2+ + Fe3+) 15-30; Co 3-16; Ni 2-6; As 0,1-0,3; Sb 0,1-2,0; твердого 800-2000. Прежде чем этот раствор может быть направлен на электролиз, его необходимо очистить от примесей.
На практике используют три метода очистки цинксодержащих растворов от примесей: гидролитический, химический и цементационный.
Очистка гидролитическим методом основана на различии pH гидратообразования металлов, и ее обычно (см. раздел 1.6) совмещают с процессом выщелачивания огарка.
В основе очистки растворов от примесей методом цементации лежит различие электрохимических потенциалов металлов. Этот процесс может быть представлен реакцией
,
(1.9)
где
– заряды катионов металлов.
Термодинамически
реакция (1.9) будет протекать вправо, если
,
а ее равновесие наступит при
=
или при
,
(1.10)
где
и
– стандартные электрохимические
потенциалы металлов,
В;
и
– активности ионов металлов в растворе,
г-ион/л; R
– газовая постоянная, R = 8,32 Дж/(мольК);
F
– число Фарадея, F = 96500 кл/г-экв;
T
– температура, К.
Выражение (1.10) можно записать в виде
,
откуда
.
(1.11)
Если известны стандартные электрохимические потенциалы металлов, то по формуле (1.11) можно рассчитать равновесное отношение активностей для различных пар металлов. Приведем значения стандартных потенциалов некоторых металлов при 25 С:
Металл |
Zn |
Fe(II) |
Cd |
Co(II) |
Ni(II) |
Cu(II) |
|
–0,762 |
–0,44 |
–0,402 |
–0,277 |
–0,25 |
+0,337 |
Расчеты по формуле (1.11) дают очень небольшие отношения активностей aМеZ+ /aZn2+ для примесей при цементации их цинком: 1 10–33 для Cu; 5 10–19 для Ni; 1,3 10–17 для Со, 3,2 10–13 для Cd и 8 10–12 для Fe.
Эти данные показывают, что термодинамически есть возможность очистить раствор цементацией цинком весьма полно. На практике, однако, степень осаждения примесей из раствора при использовании в качестве цементатора цинка гораздо ниже из-за кинетических затруднений. Железо, например, при комнатной температуре практически не осаждается цинком совсем. Никель и кобальт при низких температурах цементируется цинком хуже, чем кадмий. Сочетание влияния термодинамических и кинетических факторов на процесс цементации примесей цинком в порядке убывания скорости их осаждения позволяет расположить их при температурах 70 С в следующий ряд: Cu Cd Ni Co (Fe2+ не цементируется). Заметим, что при температурах более 80 С кадмий осаждается хуже, чем никель и кобальт.
На практике для очистки цинксодержащих растворов от примесей цементацией используют порошкообразный цинк (цинковую пыль), который чаще всего получают распылением жидкого цинка. Процесс ведут в агитаторах с механическим перемешиванием. Интенсификация процесса цементации достигается использованием более мелкой цинковой пыли, увеличением кратности ее расхода, повышением температуры до оптимальной и увеличением интенсивности перемешивания пульпы. В зависимости от состава раствора и других факторов процесс цементации проводят в две-четыре стадии. Общий расход цинковой пыли в 2-3 раза превышает теоретически необходимое ее количество. Для интенсификации процесса очистки раствора от кобальта и никеля вместе с цинковой пылью вводят в раствор соединения сурьмы или мышьяка. Процесс цементации ведут при pH = 35,4. Осадок (кек) отделяют от раствора фильтрацией.
Химический метод очистки раствора от примесей используют в металлургии цинка для вывода из раствора кобальта (в настоящее время уже изредка) и хлор-иона. Этот метод основан на образовании примесями труднорастворимых соединений с реагентами, добавляемыми в раствор. Для очистки растворов от кобальта используют в основном два вида реагентов: этиловый ксантогенат натрия или калия (С2Н5ОСS2Na или C2H5OCS2K) и -нитрозо--нафтол (C10H6NOOH). В первом случае кобальт осаждается в виде соединения (С2Н5ОСS2)3Со, во втором – (C10H6NOO)2Со. Катализатором при окислении Со2+ до Со3+ служит Cu2+.
Для очистки растворов от хлор-иона в качестве реагентов можно использовать Ag2SO4 или (CuSO4aq + Cu). В первом случае образуется труднорастворимое в воде соединение AgСl, а во втором Cu2Cl2. Контроль и поддержание в растворе на допустимом уровне содержания других примесей (Na, K, Mg) осуществляют путем вывода из общего процесса части раствора и отдельной его переработки (например, выпариванием раствора в печи кипящего слоя получают цинковый купорос).