Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kollokvium (1).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
298.65 Кб
Скачать

13. Связь между силой и потенциальной энергией. Потенциальные энергии силы тяжести, силы упругости и силы гравитационного взаимодействия.

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы  , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии  . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Это соотношение справедливо для любого направления в пространстве, в частности и для направлений декартовых координатных осей х, у, z:

Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:

в математике вектор  ,где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом  .Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести   Работа этой силы равна изменению некоторой физической величины mgh (где h – высота, отсчитываемая от некоторого нулевого уровня), взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести:

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень. В то же время она равна работе внешних сил на перемещение тела с нулевого уровня на требуемую высоту. Потенциальная энергия Eр зависит от выбора нулевого уровня отсчета. Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔEр = Eр2 – Eр1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Растяжение или сжатие пружины приводит к запасанию ее потенциальной энергии упругой деформации. Возвращение пружины к положению равновесия приводит к высвобождению запасенной энергии упругой деформации. Величина этой энергии равна:

Потенциальная энергия упругой деформации.. - работа силы упругости и изменение потенциальной энергии упругой деформации.

Гравитация — универсальное фундаментальное взаимодействие между всеми материальными телами.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m и M, разделёнными расстоянием  R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами m и M, находящихся на расстоянии  R одна от другой, равна

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Еp = 0) принят при r = ∞.

14. Механическая работа и кинетическая энергия. Механическая энергия системы тел. Закон сохранения механической энергии.

Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек), тела или системы.

При прямолинейном движении одной материальной точки и постоянном значении приложенной к ней силы работа (этой силы) равна произведению величины проекции вектора силы на направление движения и величины совершённого перемещения:

Если сила не постоянна, то в этом случае она вычисляется как интеграл:

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна:  , где m – масса, V – линейная скорость, J – момент инерции системы, ω – угловая скорость.

Полная механическая энергия системы - это сумма её кинетической и потенциальной энергией: E = Eк + Eп. Её вид может выглядеть так: E = (mv^2)/2 + mgh (для случая свободного падения тела). По закону сохранения энергии, эта сумма всегда остаётся неизменной.

Закон сохранения механической энергии: энергия замкнутой консервативной системы остается постоянной при всех, происходящих в ней процессах и превращениях. Энергия может переходить из одних видов в другие (механические, тепловые, и т.д.), но общее ее количество остается постоянным. E- const

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]