
- •Предисловие
- •Введение
- •1. Информатика, информационные технологии
- •1.1. Информация
- •1.1.1. Понятие информации
- •1.1.2. Свойства информации
- •1.1.3. Количество информации
- •1.1.4. Информационные процессы
- •1.3. Представление (кодирование) данных
- •1.3.1. Системы счисления
- •1.3.2. Представление данных в памяти компьютера
- •1.4 Математические основы информатики
- •1.4.1. Алгебра высказываний (булева алгебра)
- •1.4.2. Элементы теории множеств
- •2.5. Поколения цифровых устройств обработки информации
- •2.6. Архитектуры вычислительных систем сосредоточенной обработки информации
- •2.7. Функциональная организация персонального компьютера
- •3. Программное обеспечение
- •3.1. Классификация программного обеспечения. Виды программного обеспечения и их характеристики
- •3.2. Системное программное обеспечение
- •3.2.1 Базовое программное обеспечение
- •3.2.2. Файловые системы
- •3.3. Служебное программное обеспечение
- •3.4. Основы машинной графики
- •3.5. Программное обеспечение обработки текстовых данных
- •3.6. Электронные таблицы
- •3.7. Электронные презентации
- •3.8. Базы данных, системы управления базами данных
- •4. Модели решений задач
- •4.1. Основные понятия
- •4.2. Классификация видов моделирования
- •4.3. Информационные модели
- •4.4. Этапы и цели моделирования
- •4.5 Модели представления данных
- •5. Алгоритмизации и программирование
- •5.1. Понятие алгоритма и его свойства
- •5.2. Способы описания алгоритмов
- •5.3. Основные алгоритмические конструкции
- •5.3.1. Линейная алгоритмическая конструкция
- •5.3.2. Разветвляющаяся алгоритмическая конструкция
- •5.3.3. Алгоритмическая конструкция «Цикл»
- •5.3.4. Рекурсивный алгоритм
- •6. Языки программирования и технологии программирования
- •6.1. Языки программирования
- •6.2. Компиляторы и интерпретаторы
- •6.3. Системы программирования
- •6.4. Классификация и обзор языков программирования
- •6.5. Этапы решения задач на компьютере
- •6.6. Принципы программирования
- •7. Компьютерные сети, Интернет, компьютерная безопасность
- •7.1. Компьютерные сети
- •7.2 Топология сетей
- •7.3. Сетевые компоненты
- •7.4. Интернет. Основные понятия
- •7.5. Подключение к Интернету
- •7.6. Вопросы компьютерной безопасности
- •Заключение
- •Глоссарий
- •4.4. Этапы и цели моделирования 84
4.3. Информационные модели
Информационные модели во многих случаях опираются на математические модели, так как при решении задач математическая модель исследуемого объекта, процесса или явления неизбежно преобразуется в информационную для ее реализации на компьютере. Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Определим основные понятия информационной модели.
Информационным объектом называется описание реального объекта, процесса или явления в виде совокупности его характеристик (информационных элементов), называемых реквизитами. Информационный объект определенной структуры (реквизитного состава) образует тип (класс), которому присваивают уникальное имя. Информационный объект с конкретными характеристиками называют экземпляром. Каждый экземпляр идентифицируется заданием ключевого реквизита (ключа). Одни и те же реквизиты в различных информационных объектах могут быть как ключевыми, так и описательными. Информационный объект может иметь несколько ключей.
Отношения, существующие между реальными объектами, определяются в информационных моделях как связи. Существует три вида связей: один к одному (1:1), один ко многим (1:∞) и многие ко многим (∞:∞).
Связь один к одному определяет соответствие одному экземпляру информационного объекта X не более одного экземпляра информационного объекта Y, и наоборот.
При связи один ко многим одному экземпляру информационного объекта X может соответствовать любое количество экземпляров информационного объекта Y, но каждый экземпляр объекта Y связан не более чем с одним экземпляром объекта X.
Связь многие ко многим предполагает соответствие одному экземпляру информационного объекта X любое количество экземпляров объекта Y, и наоборот.
Определим информационную модель как связанную совокупность информационных объектов, описывающих информационные процессы в исследуемой предметной области. Существующие информационные модели разделим на универсальные и специализированные. Универсальные модели предназначены для использования в различных предметных областях, к ним относятся: базы данных и системы управления базами данных, автоматизированные системы управления, базы знаний, экспертные системы. Специализированные модели предназначены для описания конкретных систем, являются уникальными по своим возможностям, более дорогостоящими.
4.4. Этапы и цели моделирования
Первый этап – определение целей моделирования. Основные из них таковы:
1) модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);
2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
На следующем этапе составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Выделить более важные (или, как говорят, значимые) факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель. Отбрасывание (по крайней мере при первом подходе) менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. Умело ранжированная модель должна быть адекватна исходному объекту или процессу в отношении целей моделирования. Обычно определить, адекватна ли модель, можно только в процессе экспериментов с ней, анализа результатов.
Следующий этап - поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.
Когда математическая модель сформулирована, выбираем метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса.
Разработка алгоритма и составление программы для ЭВМ – это творческий и трудно формализуемый процесс. Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.