Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Богатиков 3.Петрология магматических пород.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.18 Mб
Скачать

Часть III. Магматические горные породы (петрология)

могут быть и новообразованными твердыми фазами, которые кри­сталлизовались из пересыщенного глиноземом расплава. Лейко-граниты лишены реликтовых включений и минералов.

Высокоглиноземистые граниты сосредоточены во внутренних поднятиях подвижных поясов, где они слагают крупные интрузив­ные тела, залегающие среди терригенных толщ или метаморфиче­ских пород фундамента. По мере увеличения глубины денудаци­онного среза аллохтонные граниты могут обнаруживать переход к массивам параавтохтонного облика, тесно связанным с окружа­ющими метаморфическими породами. Гранитные плутоны не­редко группируются в пояса, вытянутые на многие сотни киломе­тров. Примерами служат пояс раннемеловых колымских батолитов, позднемеловые граниты Чукотки, позднепалеозой-ские граниты Калбы в Восточном Казахстане, их аналоги в Цен­тральной и Западной Европе, мезозойские гранитные пояса Юго-Восточной Азии.

Геологические, петрографические и геохимические особенно­сти высокоглиноземистых гранитов указывают на выплавление ис­ходных магм из метаморфического корового вещества, богатого слюдами. Обычно это метаморфизованные глинистые или грау-вакковые осадочные породы. По классификации Б. Чаппела и А.Уайта (1974 г.), высокоглиноземистые граниты относятся к S-ти-пу (sedimentary granites). Однако в некоторых провинциях источни­ком высокоглиноземистых гранитов служили слюдяные ортогней-сы. Первоначально это были кислые вулканиты или гранитоиды, которые затем подверглись кислотному выщелачиванию под воз­действием нагретых водных растворов.

Частичное плавление метаосадочных пород сопровождалось дегидратацией слюд, которые служили источником воды, раство­ренной в гранитном расплаве. Плавление начиналось при Р-Т ус-ловиях амфиболитовой фации на глубине около 10-12 км ~ 400 МПа) при температуре 650-750 °С и было связано с разло­жением мусковита (Мu), например:

Mu + PI + Q→L + Sill, (3)

где Pl — плагиоклаз, Q — кварц, L — расплав, Sill — силлиманит. По­следний минерал представляет собой остаточную твердую фазу.

Дальнейшее нагревание до 750-850 °С и выше приводило к де­гидратации биотита (Bi) с образованием шпинели (Sp), кордиери-та (Cord), фаната (Gr) и гиперстена (Орх) как реститовых фаз:

Bi + Sill (Мu) + PI + Q → L + (Sp, Cord,Gr) + Орх ± Ksp (4)

512

7. Магматические горные породы корового происхождения

Наличие реликтового кордиерита указывает на относительно небольшую глубину гранитообразования (Р < 400 МПа), а появле­ние граната как продукта разложения биотита свидетельствует о том, что этот процесс происходил на большей глубине. Эксперименты показали, что максимальное количество гранитного расплава обра­зуется в тех случаях, когда относительные количества минералов, принимающих участие в реакции плавления, близки к ее стехиоме­трии. Так, реакция (4) наиболее «продуктивна», если в частичное плавление вовлекается метаосадочная порода, состоящая из 38% би­отита, 32% кварца, 22% плагиоклаза и 8% силлиманита (А.Патино Дус и А.Д.Джонстон, 1991 г.). При отклонении минерального соста­ва от этих пропорций возрастает количество реститового материа­ла.

Высокоглиноземистые гранитные расплавы, имевшие относи­тельно низкую начальную температуру и содержавшие не менее 1—3 мас.% растворенной воды, редко достигали поверхности Зем­ли и обычно затвердевали на глубине нескольких километров в ви­де интрузивных тел.

Отсутствие магнетита указывает на низкий окислительный по­тенциал расплава, что обусловлено низкой щелочностью кислой магмы, а также наличием графита в метаосадочных породах, кото­рые служили источником гранитов.

Высокоглиноземистые лейкограниты формировались при отно­ сительно малых степенях частичного плавления (≤20 об.%), не пре­ вышавших критической доли расплава, необходимой для перехода магматического очага в эффективно жидкое состояние (см. раз­ дел 3.2). Жидкая фаза выжималась из межзернового пространства и не содержала реститового материала.

Высокоглиноземистые меланограниты являются продуктом бо­лее продвинутого частичного плавления, при котором доля жидкой фазы приближалась к 40 ± 10 об.%, и магматический очаг превра­щался в эффективно жидкую суспензию. Эта суспензия, поднима­ясь, увлекала включения твердых реститов, которые встречаются в меланогранитах.

Лейкограниты могут быть также продуктом кристаллизацион­ной дифференциации меланогранитов и представлять собой за­твердевшие остаточные расплавы, выжатые из магматических камер при их затвердевании.

7.4.4. Высокоглиноземистые микроклин-альбитовые редкометальные граниты и онгониты

Своеобразной разновидностью высокоглиноземистых грани­тов являются интрузивные породы, полевые шпаты в которых пред­ставлены микроклином (нередко это амазонит) и альбитом. Отсут­ствие более основного плагиоклаза определяет низкое содержание СаО в породах, а преобладание щелочных полевых шпатов — высо­кую сумму Na20 + К20 (см. табл. 7.2), соответствующую кислым магматическим породам умереннощелочного ряда. Вместе с тем микроклин-альбитовые граниты пересыщены алюминием отно­сительно Na и К так, что al2<<0 0, a al1 > 1.

Характерной особенностью микроклин-альбитовых гранитов являются высокие содержания фтора (0.2-0.4 мас.%) и лития (0.02-0.2 мас.%), которые на 1-2 порядка выше, чем в стандартных биотитовых и двуслюдяных гранитах. Фтор заключен в слюдах, то­пазе, флюорите, а литий главным образом в слюдах. Некоторые разновидности выделяются высокими содержаниями фосфатов. Типично обогащение пород Sn и редкими металлами (Та, Nb, Be), заключенными в танталониобатах, берилле и других акцессорных минералах. На Горном Алтае обнаружены сподуменовые граниты. В соответствии с геохимическими особенностями микроклин-альбитовые граниты называют литий-фтористыми, а также редко-метальными. По химическому и минеральному составам микро­клин-альбитовые граниты обнаруживают большое сходство с редкометальными пегматитами. Максимальные концентрации редких металлов, достигающие промышленного уровня, отмеча­ются вблизи апикальных частей гранитных интрузивов.

Тела микроклин-альбитовых гранитов, измеряемые сотнями метров-первыми километрами в плане, залегают среди более круп­ных гранитных и лейкогранитных плутонов или в непосредствен­ной близости от них. Примерами могут служить Этыкинский и Ор­ловский интрузивы в Забайкалье, Алахинский интрузив на Горном Алтае, Майкульский интрузив в Казахстане, интрузив Бовуар во Франции.

На начальном этапе изучения микроклин-альбитовых редкоме-тальных гранитов эти породы рассматривались как метасоматиче-ские образования, возникшие в результате эпигенетического пре­образования обычных биотитовых или двуслюдяных гранитов. Для обозначения редкометальных метасоматитов был предложен

514