Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Богатиков 3.Петрология магматических пород.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.18 Mб
Скачать

Часть III Магматические горные породы (петрология)

берлитовых трубок показал, что маломощные ответвления от основ­ного тела кимберлитов часто наиболее богаты алмазами. Вероятно, быстрое затвердевание тонких апофиз препятствует резорбции ксе-ногенных кристаллов алмаза кимберлитовой магмой.

Перемещение кимберлитовой магмы к поверхности Земли про­исходит с большой скоростью и с ускорением, что обусловлено ма­лой вязкостью жидкой фазы и выделением из нее газообразных Н20 и С02. Дегазации кимберлитовой магмы предшествует разде­ление ее на силикатный и карбонатный расплавы, которые при Р< < 2.5 ГПа (глубина 70-80 км) не смешиваются друг с другом.

Удельный объем воды и углекислоты резко возрастает при Р= = 40-80 МПа (глубина 1.5-3.0 км), и на этой глубине происходит спонтанное расширение флюидизированной кимберлитовой мас­сы, состоящей из смеси газообразных, жидких и твердых фаз, кото­рая прорывается к поверхности в виде трубок взрыва. Как показы­вают геологические наблюдения, первоначальная вертикальная протяженность кимберлитовых трубок действительно составляет около 2.5 км. Согласно расчетам, скорость подъема кимберлитовой суспензии—эмульсии вблизи дневной поверхности равна пример­но 400 м/с. Практически мгновенный подъем кимберлитовой мас­сы сопровождается механическим разрушением пород земной ко­ры, обломки которых увлекаются флюидизированным потоком и вместе с глубинными включениями выносятся наверх.

Область зарождения алмазоносных кимберлитовых магм в ко­ ординатах: температура-давление ограничена линией равновесия графит-алмаз, экспериментально установленным интервалом меж­ ду солидусом и ликвидусом кимберлитового расплава и Р— Т усло- виями устойчивости эклогитовой минеральной ассоциации. При та­ ких граничных условиях область зарождения кимберлитовых магм отвечает давлению 5-7 ГПа (глубина 150-210 км) и температуре 1150-1500 °С, что соответствует алмаз-пироповой фации глубинно­ сти, по Н.Л.Добрецову. Эти оценки подтверждаются опытами по плавлению карбонатизированных перидотитов при высоком давле­ нии (данные Д.Канила, 1990 г.).

Генетические соотношения между кимберлитами и ассоцииру­ющими с ними мелилитовыми магматическими породами остают­ся предметом дискуссии. По-видимому, альнёиты зарождаются на меньшей глубине по сравнению с кимберлитами. Если в источнике кимберлитов карбонат представлен магнезитом, то в области гене­рации альнёитовых расплавов — доломитом. Источники альнёито-

464

б. Магматические породы мантийного происхождения

вой магмы располагаются выше линии равновесия алмаз-графит, что объясняет отсутствие ксеногенного алмаза в мелилитовых породах.

Алмазоносные оливиновые лампроиты, обнаруженные в Запад­ной Австралии, по составу, условиям залегания и происхождению близки к кимберлитам. Значительным сходством обладают и алма­зы из лампроитов и кимберлитов. Те и другие содержат однотипные микровключения гарцбургит-дунитового и эклогитового параге-незисов, причем последний является доминирующим. Имеются основания полагать, что и в лампроитах алмаз имеет ксеногенную природу и генетически связан с включениями высокобарических мантийных пород.

Лампроиты отличаются от кимберлитов значительно меньшим содержанием карбонатного материала, отсутствием магматичес­кого кальцита, а также наличием силикатов и алюмосиликатов, особенно богатых титаном и калием, которые не встречаются в ким­берлитах. Вместе с тем типичный для кимберлитов пикроильменит в лампроитах отсутствует. Для лампроитов характерны также высо­кие содержания фтора, заключенного во флогопите.

Имеющиеся данные приводят к выводу, что алмазоносные оли-виновые лампроиты возникают в верхней мантии при тех же усло­виях алмаз-пироповой фации глубинности, что и кимберлиты. Так же, как кимберлиты, они являются продуктом частичного плавле­ния метасоматически измененного мантийного вещества, содержав­шего флогопит. Различие заключается лишь в том, что это вещест­во было лишено карбонатного материала и обогащено минералами с повышенными содержаниями Ti, К и F. Эти различия обусловле­ны как спецификой глубинного флюида, так и особенностями ис­ходного состава твердого мантийного субстрата. Последний был, ве­роятно, представлен предельно истощенными гарцбургитами с минимальным содержанием граната, диопсида, а значит и каль­ция, что ограничивало возможность образования СаС03 даже при достаточном количестве С02 во флюидной фазе.