- •Часть III
- •Оглавление
- •Введение
- •1. Глубинное строение земли
- •Часть III. Магматические горные породы (петрология)
- •1.1. Земная кора
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •1.2. Верхняя мантия
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •1.3. Астеносфера и литосфера
- •1.4. Нижняя мантия и ядро Земли
- •1.Глубинное строение Земли
- •Дополнительная литература
- •2. Современные представления о происхождении земли
- •Часть III. Магматические горные породы (петрология)
- •2. Современные представления о происхождении Земли
- •Часть III. Магматические горные породы (петрология)
- •3. Физические свойства,
- •3.1. Физические свойства магм
- •Часть III. Магматические горные породы (петрология)
- •3. Физические свойства, зарождение и подъем магматических расплавов
- •Часть III. Магматические горные породы (петрология)
- •3.2. Зарождение магм
- •Часть 111. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •3.3. Подъем магм
- •3. Физические свойства, зарождение и подъем магматических расплавов
- •Часть III. Магматические горные породы (петрология)
- •3. Физические свойства, зарождение и подъем магматических расплавов
- •Часть III. Магматические горные породы (петрология)
- •Дополнительная литература
- •4. Охлаждение и затвердевание магматических расплавов
- •4.1. Форма кристаллов
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •4.2. Размер кристаллов
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •Часть 111. Магматические горные породы (петрология);
- •4.3. Последовательность кристаллизации
- •4. Охлаждение и затвердевание магматических расплавов
- •4.3.2. Двойная система с эвтектикой
- •4. Охлаждение и затвердевание магматических расплавов
- •4.3.3. Тройная система с эвтектикой
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •4.3.5. Тройная система с котектикой
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •Часть 111. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •4.3.7. Двойная система с перитектикой
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •4.3.8. Тройная система с перитектикой
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •Часть III. Магматические горные породы (петрология)
- •4. Охлаждение и затвердевание магматических расплавов
- •5. Генетическая систематика магматических горных пород
- •6. Магматические породы мантийного происхождения
- •6.1. Продукты затвердевания первичных мантийных магм
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •6, Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •6.1.1. Происхождение коматиитов и пикритов
- •6. Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •6.1.2. Происхождение бонинитов
- •6. Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •Часть III Магматические горные породы (петрология)
- •6.2. Дифференциаты и кумулаты мантийных магм
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •6.2.2. Методы исследования кристаллизационной дифференциации
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •6.2.3. Кумулаты мантийных магм
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •6.3. Механизм формирования расслоенных плутонов
- •6. Магматические породы мантийного происхождения
- •6. Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •6.4. Происхождение анортозитов
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •Часть III. Магматические горные породы (петрология)
- •6. Магматические породы мантийного происхождения
- •6.5. Происхождение карбонатитов
- •Часть III. Магматические горные породы (петрология)
- •Дополнительная литература
- •7. Магматические горные
- •7.1. Закономерности частичного плавления и кристаллизации кварц-полевошпатовых пород
- •Часть III. Магматические горные породы (петрология)
- •7.1.2. Состав эвтектоидных кислых магм
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •7. Магматические горные породы корового происхождения
- •7.2. Продукты затвердевания автохтонных и аллохтонных коровых магм
- •7.3. Автохтонные и параавтохтонные граниты зон ультраметаморфизма
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •7. Магматические горные породы корового происхождения
- •7. Магматические горные породы корового происхождения
- •7. Магматические горные породы корового происхождения
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •7.4.2. Умеренноглиноземистые гранодиориты—адамеллиты—
- •Часть III. Магматические горные породы (петрология)
- •7.4.3. Высокоглиноземистые мелано- и лейкограниты (s-mun)
- •Часть III. Магматические горные породы (петрология)
- •7. Магматические горные породы корового происхождения
- •7. Магматические горные породы корового происхождения
- •Часть III. Магматические горные породы (петрология)
- •7. Магматические горные породы корового происхождения
- •7.4.5. Низкоглиноземистые граносиениты—граниты—аляскиты и трахириолиты (пантеллериты)-риолиты (комендиты) (а-тип)
- •Часть III. Магматические горные породы (петрология)
- •7. Магматические горные породы корового происхождения
- •Часть III. Магматические горные породы (петрология)
- •7.5. Дифференциация кислых коровых магм
- •7. Магматические горные породы корового происхождения
- •Дополнительная литература
- •8. Магматические породы гибридного происхождения
- •8.1. Смешение первичных мантийных магм и их дифференциатов в промежуточных камерах
- •8. Магматические породы гибридного происхождения
- •Гибридного происхождения
- •Часть III. Магматические горные породы (петрология)
- •8.2. Контаминация мантийных ультраосновных и основных магм сиалическими горными породами корового происхождения
- •8.3. Контаминация кислых коровых магм более основными горными породами
- •8. Магматические породы гибридного происхождения
- •Породами
- •Часть III. Магматические горные породы (петрология)
- •8.5. Смешение мантийных и коровых магм
- •8.5.1. Признаки смешения магм
- •8. Магматические породы гибридного происхождения
- •Часть III. Магматические горные породы (петрология)
- •8. Магматические породы гибридного происхождения
- •Часть III. Магматические горные породы (петрология)
- •8. Магматические породы гибридного происхождения
- •8.6. Петрологические модели формирования изверженных пород среднего состава, не связанные со смешением магм
- •Часть III. Магматические горные породы (петрология)
- •Дополнительная литература
- •9. Происхождение
- •Часть III. Магматические горные породы (петрология)
- •9, Происхождение мегматических ассоциаций
- •Дополнительная литература
- •10. Магматизм главных стадий геологической эволюции земли
- •10. Магматизм главных стадий геологической эволюции Земли
- •10. Магматизм главных стадий геологической эволюции Земли
- •Часть III. Магматические горные породы (петрология)
- •Часть III. Магматические горные породы (петрология)
- •Дополнительная литература
- •Заключение
4. Охлаждение и затвердевание магматических расплавов
Если порода X, состоящая из форстерита, пиропа и диопсида, начинает плавиться, и расплав все время остается в равновесии с кристаллами (модель порционного плавления), то первая капля жидкости будет иметь состав Е. После того, как диопсид полностью перейдет в расплав, состав жидкой фазы начнет смешаться от Е к А. В точке А будет полностью израсходован пироп, и при дальнейшем нагревании состав расплава меняется вдоль линии АХ. В точке X исчезнет форстерит, и порода будет расплавлена на 100%.
Если жидкая фаза, возникнув, сразу же удаляется из области магмообразования (модель фракционного плавления), то изменение состава жидкости в ходе прогрессивного плавления будет иным. На начальной стадии возникнет эвтектическая жидкость Е, имеющая температуру 1670 °С. Удаление этой жидкости смещает состав твердого остатка в направлении Х→ X′→ X"→ R. В точке R диопсид полностью переходит в расплав, и среди твердых фаз остаются только форстерит и пироп. Температура 1670 °С недостаточна для плавления смеси этих минералов, и только при 1770 °С появится эвтектический расплав В, который будет продолжать формироваться до тех пор, пока не исчезнет весь пироп. После этого твердый остаток состоит только из форстерита, который можно расплавить лишь при Т= 2075 °С. Таким образом, если расплав удаляется из зоны магмообразования, состав и температура жидкой фазы меняются дискретно: сначала возникает самый низкотемпературный расплав, отвечающий по составу тройной эвтектике, затем при большем нагреве — жидкость, соответствующая двойной эвтектике, а в конце процесса плавится минерал, оставшийся в избытке.
4.3.4. Двойная система с непрерывным твердым раствором
Инвариантные эвтектические равновесия «кристаллы-расплав» возможны лишь при условии, что все твердые фазы имеют постоянный состав. Если хотя бы один из минералов представлен твердым раствором переменного состава, появляется дополнительная степень свободы, которая не позволяет достичь инвариантного равновесия. Последовательность кристаллизации при этом становится иной.
Рассмотрим двойную систему с непрерывным твердым раствором на примере изобарического сечения (1 атм) системы NaAlSi308 (альбит)-СаА12Si208 (анортит), характеризующей кристаллизацию и плавление плагиоклазов (рис. 4.8). Сплошная линия ликвидуса
435
Рис. 4.8. Изобарическое сечение системы NaAlSi308 (аль-бит)-CaAl2Si208 (анортит) при атмосферном давлении, по А. Филпотгсу, 1990 Пояснения см. в тексте
и пунктирная линия солидуса, показанные на рисунке, разделяют области с различным фазовым составом. Если расплав D, охлаждаясь, достигает температуры ликвидуса в точке Е, то из расплава выделяется плагиоклаз, состав которого соответствует точке F на линии солидуса. По мере дальнейшего охлаждения состав кристаллов смещается в направлении F→Н, а состав жидкой фазы - в направлении Е→ G. Последняя капля расплава имеет состав J, а твердая фаза в конечном итоге приобретает состав К, соответствующий исходному расплаву D.
Такой равновесный ход кристаллизации возможен лишь при условии, что скорость диффузии альбитового и анортитового компонентов в твердой и жидкой фазах достаточно велика для того, чтобы составы расплава и кристаллов все время менялись вдоль линий ликвидуса и солидуса. Поскольку скорость диффузии в силикатном расплаве и особенно в твердой фазе мала, то в природных условиях равновесие часто не достигается, и образуются неоднородные кристаллы, состоящие из зон разного состава. Зональные кристаллы плагиоклаза постоянно встречаются в магматических породах.
436
В метаморфических породах плагиоклаз более однороден, так как длительное сохранение высоких температур способствует достижению равновесия.
Аналогичные фазовые соотношения характерны и для других систем с непрерывными твердыми растворами, например, для системы Mg2Si04 (форстерит)-Fе2SiO4 (фаялит), описывающей кристаллизацию оливинов. Высокая температура кристаллизации в этой системе и низкая кремнекислотность расплава способствуют относительно быстрой диффузии, и зональные оливины встречаются реже, чем плагиоклазы.
