
- •Введение
- •1. Электропривод летательных аппаратов
- •1.1. Классификация электроприводов летательных аппаратов
- •1.3. Требования, предъявляемые к электроприводу летательных аппаратов
- •1. Высокая надежность.
- •2. Минимальные масса и габаритные размеры.
- •3. Высокая точность отработки механического движения, статическая и динамическая устойчивость.
- •4. Быстродействие и высокое качество переходных процессов.
- •5. Высокая степень готовности.
- •6. Энергетическая эффективность.
- •7. Совместимость с другими бортовыми агрегатами.
- •Вопросы для самоконтроля
- •2. Механика электропривода
- •2.1. Кинематическая схема электропривода
- •2.2. Типовые статические нагрузки электропривода
- •2.3. Уравнения движения электропривода
- •2.4. Механическая часть электропривода, как объект системы автоматического управления
- •2.5. Переходные процессы в механической части электропривода
- •2.6. Динамические нагрузки электропривода
- •3. Обобщенная электрическая машина
- •3.1. Линейные преобразования обобщенной машины
- •3.2. Механические характеристики обобщенной машины
- •4. Асинхронный электромеханический преобразователь
- •4.1. Математическое описание процессов электромеханического преобразования в асинхронном двигателе
- •4.2. Статические характеристики асинхронного электромеханического преобразователя при питании от источника тока
- •4.3. Режим динамического торможения асинхронного двигателя
- •4.4. Динамические свойства асинхронного двигателя
- •5. Синхронный электромеханический преобразователь
- •5.1. Электромеханическое преобразование в синхронном двигателе
- •5.2. Угловая характеристика синхронного двигателя
- •5.3. Динамические свойства синхронного двигателя
- •6. Электромеханический преобразователь постоянного тока
- •6.1. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •6.2. Механическая характеристика двигателя постоянного тока с независимым возбуждением
- •6.3. Динамические свойства двигателя постоянного тока с независимым возбуждением
- •7. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •7.1. Динамические свойства электропривода с линейной механической характеристикой
- •7.2. Динамика электропривода с синхронным двигателем
2.1. Кинематическая схема электропривода
Непосредственное представление о механических связях даёт кинематическая схема электропривода (рис. 2.2)
Рис. 2.2. Кинематическая схема электропривода
Здесь двигатель Д через соединительную муфту СМ1, клиноременную передачу (КРП), ряд зубчатых передач ЗПi и соединительную муфту СМ2 приводит во вращение барабан (Б), преобразующий вращательное движение в поступательное движение ряда связанных масс. При нагружении элементы системы (валы, опоры, клиноременные передачи, зубчатые зацепления и т.п.) деформируются, т. к. механические связи не являются абсолютно жёсткими. При изменении нагрузки массы имеют возможность взаимного перемещения, которое определяется жёсткостью связи.
Каждый вращательно движущийся элемент обладает моментом инерции Ji и связан с (i+1) – элементом механической связью, обладающей жёсткостью Ci. Соответственно каждый поступательно движущийся элемент имеет массу mj и связан со следующим связью с жёсткостью Сj. В пределах механических связей, для которых выполняется закон Гука, жёсткости можно определить с помощью соотношений
;
(2.1)
где Mi и Fj - нагрузка упругой механической связи;
∆φi и ∆Sj - деформация упругого элемента при вращательном и поступательном движении.
В связи с наличием передач различные элементы системы движутся с различными скоростями. Поэтому для составления расчетных схем необходимо приведение всех параметров элементов кинематической цепи к одной расчётной скорости, обычно к скорости вала двигателя.
Условием соответствия расчётной схемы реальной механической системе является выполнение закона сохранения энергии. При приведении необходимо обеспечить сохранение кинетической и потенциальной энергий системы, а также элементарной работы всех действующих в системе сил и моментов на возможных перемещениях. Следовательно,
;
.
(2.2)
Отсюда получаем формулы приведения:
;
,
(2.3)
где
–
передаточное число от вала приведения
до i-го
вала;
– радиус приведения к валу со скоростью
ω1.
При приведении вращательных φi и поступательных Sj перемещений необходимо учитывать, что передаточное число и радиус приведения определяются соотношением скоростей.
Тогда перемещения связаны зависимостями:
;
.
При линейных
кинематических связях
и
.
В этом случае формулы приведения
перемещений имеют вид:
;
.
При приведении жёсткостей механических связей должно выполняться условие равенства запаса потенциальной энергии деформации.
Потенциальная энергия Wп равна работе, совершаемой моментом М на участке изменения угла Δφ. Так как величина момента скручивания изменяется от 0 до Mmax, то, с учетом (2.1), работа равна:
.
Тогда
;
.
Формулы приведения:
;
.
(2.4)
Приведение моментов и сил нагрузки элементов кинематической цепи должно осуществляться при условии равенства элементарной работы на возможных перемещениях:
;
.
Следовательно,
;
(2.5)
Для большей наглядности сопоставления по результатам приведения можно построить исходную приведённую расчётную схему, представив в ней массы в виде прямоугольников, площадь которых пропорциональна приведенным моментам инерции, а жёсткости связей между ними в виде соединений, длина которых обратно пропорциональна жёсткости.
Для рассматриваемой кинематической схемы приведённая расчётная схема имеет вид, показанный на рис. 2. 3.
Рис. 2.3. Приведённая расчётная схема кинематической цепи
К ротору двигателя с моментом инерции J1 приложен электромагнитный момент М и момент потерь ΔМ, причём для правильного учёта знаков действующих моментов указано положительное для всей приведённой схемы направление скорости ω1.
Исследования динамики электропривода показывают, что неразветвлённые расчётные механические схемы в большинстве случаев сводятся к трёхмассовой (рис. 2.4, а), двухмассовой (рис. 2.4, б) расчётным схемам и к жёсткому приведённому механическому звену (рис. 2.4, в)/
Трёхмассовая упругая система используется в тех случаях, когда необходимо более детально анализировать движения масс механизма. При этом обычно используется моделирование на аналоговой (ABM) или цифровой (ЦВМ) вычислительных машинах.
а б в
Рис. 2.4. Расчётные схемы электропривода: трёхмассовая (а), (б) и жёсткое приведённое механическое звено (в)
Для исследования отдельных физических особенностей используется двухмассовая система.
В тех случаях, когда параметры системы таковы, что влияние упругих связей незначительно, или когда этим влиянием можно пренебречь, используется жёсткое приведённое звено. Суммарный приведённый момент инерции может быть выражен:
(2.7)
где n и k – число масс установки, совершающих соответственно вращательное и поступательное движение.
Суммарный приведённый к валу двигателя момент статической нагрузки MC
(2.8)
где q и p – число внешних моментов Mi и сил Fi, приложенных к системе, кроме электромагнитного момента двигателя.
Характерным примером разветвлённых кинематических схем является кинематическая схема многодвигательного электропривода, в котором двигатели через индивидуальные редукторы действуют на общий рабочий механизм.