Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы Рассчета устойчивости.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.39 Mб
Скачать

2.14 . Определение давления от призмы обрушения по теории Кулона

Как известно, в строительной механике давление на подпорную стену от ограждаемого ею грунта принято, основываясь на гипотезе Кулона, определять как активное давление сыпучего тела. Предполагается некоторая; весьма незначительная подвижка стены от массива, которая вызовет отделение от сыпучего тела некоторой призмы грунта. При этом предполагается, что сдвиг происходит по плоскости и сыпучее тело в объеме упомянутой призмы сдвигается, приняв форму затвердевшего клина. Давление E а , производимое сыпучим телом на смещающуюся стенку, то есть давление от этого затвердевшего клина, называется активным давлением грунта. На это давление E а обычно и рассчитываются подпорные стены, устои мостов, набережные и т.д. Наоборот, при надвижке подпорной стены на грунт (например, в уровне заделки стены ниже дневной поверхности) возникает так называемое пассивное давление грунта E п . В частном случае, при горизонтальной поверхности сыпучего тела (грунта), вертикальной задней грани подпорной стены и отсутствии сцепления, эти давления, как известно, равны:

E а = (1/2) γH 2 tg 2 (45° - φ /2); E п = (1/2) γH 2 tg 2 (45° + φ /2).               ( 131)

При связном грунте (наличии сцепления) эти результирующие давления выражаются формулами:

                     ( 132)

Практика показала, что несмотря на ряд допущений, расчет на активное давление грунта в большинстве случаев дает достаточно надежные подпорные стены.

Однако так решается задача в обычных (неоползневых) условиях.

В практике проектирования удерживающих конструкций или подпорных стен на оползнях также нередко при определении давления на такое сооружение от оползня совершенно безосновательно пользуются приведенной выше формулой активного давления сыпучего тела, не имеющего ничего общего с действительным давлением на конструкцию в таких случаях. Такое определение оползневого давления для расчета противооползневых сооружений является глубоко ошибочным и вытекает из неправильного представ ления о сущности активного давления и давления от оползня на устраиваемую на нем удерживающую конструкцию.

Оползневое давление определяется из рассмотрения условий равновесия всего оползневого массива, а не части его, в том числе в виде клина, который, как легко понять, на оползне (неустойчивом и требующем удержания) не может иметь значения. Здесь должна предполагаться некоторая микроподвижка удерживающей конструкции, при которой произойдет смещение, но не части массива в виде клина, а всех оползневых масс. В таком случае для обеспечения устойчивого состояния оползня устройством удерживающей конструкции последняя должна дать в сторону, обратную движению оползня, реакцию, равную разности между активными (сдвигающими) и реактивными (сопротивляющимися сдвигу или удерживающими) силами по всей поверхности смещения оползня. Такая конструкция приведет оползень в состояние равновесия. На величину силы оползневого давления, равной этой потребной реакции, с учетом необходимого коэффициента запаса (или требуемого коэффициента устойчивости) и должна быть рассчитана противооползневая удерживающая конструкция.

Активное давление грунта по теории Кулона и оползневое давление от неустойчивого грунтового массива - величины совершенно различные и их не следует смешивать. Численно они могут совпадать, как мы увидим в дальнейшем, лишь в тех случаях, когда по закономерностям оползневых процессов рассчитывается вертикальный откос с горизонтальными (верхней и нижней) поверхностями грунта, при однородном сложении склона, без участия гидродинамических и сейсмических сил. Причем в грунтовом массиве при этом не должно быть никакой иной ослабленной поверхности скольжения, кроме получающейся по теории Кулона.

Кстати, совершенно непонятно, по каким соображениям проектировщики определяют оползневое давление именно как активное. Поскольку весь грунт надвигается на удерживающую конструкцию (что аналогично надвижке конструкции на грунт), то логичней уж было бы определять его как пассивное, хотя, разумеется, и оно не имеет ничего общего с оползневым давлением.

Рис. 23 . Методы, основанные на теории Кулона

Чтобы в дальнейшем у проектировщиков не возникало искушения применять гипотезу Кулона для определения оползневого давления, мы введем в общее численное сравнение рассматриваемых методов и давления, определенные, как активное и пассивное по Кулону. Повторяем - делается это только для того, чтобы выявить, насколько велика разница между этими способами расчета и методами определения истинного оползневого давления.

Формулы для определения активного и пассивного давления связного грунта при наклонной его поверхности (рис. 23) и принятии угла трения об удерживающую конструкцию равным нулю возьмем без выводов из нормативной литературы [ 21]:

                     ( 133 )

                           ( 134)

где P о     - вес призмы выпора;

L       - длина плоскости выпора грунта.

Величины E а и E п по написанным формулам определяются подбором для нескольких величин углов α 0 и α . За расчетное принимается наибольшее из вычисленных таким образом значений E а или E п . При этом при определении активного давления расчеты методом подбора рекомендуется начинать с угла α 0 = 45° - φ /2, а при определении пассивного давления - с угла α = 45° - φ /2 (углы наклона плоскости скольжения по теории Кулона при горизонтальной поверхности грунта).

При наличии водонасыщения грунта физико-механические характеристики принимаются для грунта в замоченном состоянии. При наличии интенсивного потока грунтовых вод к значениям E а или E п следует добавлять величину гидродинамической силы, определенной приведенными выше методами. Также необходимо поступать и с сейсмической силой при рассмотрении склонов в сейсмических районах. Кроме того, допускается увеличенное значение давления грунта от землетрясения определять по формуле [ 11 , 16]

q а,п = (1 + 2 μtg φ ) E а,п ,                                                   ( 135)

где q а,п - соответственно активное или пассивное давление грунта;

μ       - коэффициент сейсмичности;

E а,п    - активное или пассивное давление грунта без учета сейсмичности.