
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
7. ДаЛbНейшие категории математического анализа и их применение в логике
1. В математическом анализе нахождение производной от данной функции называется дифференцированием этой функции, а нахождение первоначальной функции по данной ее производной называется интегрированием; произведение производной функции на произвольное приращение аргумента именуется здесь дифференциалом, а первоначальная функция, получаемая из ее производной путем интегрирования, есть интеграл.
Существует в анализе и другое определение интеграла. Интеграл функции есть предел суммы произведений разных значений данной функции на приращение независимого переменного. Это понимание интеграла наглядно представляют при помощи такого элементарного геометрического образа: если мы возьмем криволинейную трапецию и разобьем ее на ряд т. н. элементарных прямоугольников (т. е. на ряд полосок), то площадь такой трапеции равняется пределу суммы таких элементарных прямоугольников, или, подробнее, пределу суммы площадей бесконечно умаляющихся элементарных прямоугольников при бесконечно возрастающем их числе; отсюда геометрически интеграл и есть эта площадь (при наиболее элементарном его представлении).
2. Применяя эту точную терминологию к логической области, мы можем сказать следующее, давая тем самым общую картину всех этих инфинитезимальных (т. е. построенных на понятии бесконечно–малого) заключений.
Материальная вещь есть независимое переменное, аргумент, или поскольку она носитель бесконечных и неистощимых становлений и свойств, то тут, как мы сказали выше, мы имеем огромное количество разного рода независимых переменных.
Полное и цельное существенное отражение вещи, или ее цельное мышление, есть функция этой материальной вещи.
Дифференциал существенно–отражающего мышления есть нечто, связанное с производной, т. е. с предельным переходом, т. е. с операциями над бесконечно–малыми. Что это за связь, мы сейчас увидим. Понятие это чрезвычайно важно для борьбы с метафизикой, имеющей в виду неподвижное, обалдевшее мышление; мышление здесь, как видим, дается тоже в виде сплошного процесса становления, иначе оно и не было бы отражением вечно движущейся и становящейся материи.
Кроме того, так как мышление есть функция многих переменных, то, по примеру математического анализа, мы прежде всего имеем в логике дело с частными дифференциалами, т. е. с дифференциалами в зависимости от какого–нибудь одного независимого переменного. Существует также и полный дифференциал, равный сумме всех частных дифференциалов. С понятием дифференциала мы входим уже в область серьезного инфинитезимализма в логике.
3. Именно, дифференцировать существенно отражающее мышление— значит получать понятие, т. е. понятие есть первая производная мышления. Дело в том, что адекватно и целостно отражающее материальную действительность мышление, взятое само по себе, так же неистощимо, так же бесконечно, так же бурлит неисчерпаемыми возможностями, как и отражаемая им материя. Иначе невозможно было бы и говорить об отражении. Однако и такое целостное отражение вещи, и такая сама вещь есть нечто слишком жизненно–насыщенное, есть нечто сложное и неанализиру–емое, даже излишнее для обыкновенного мышления, разговора и действия, ибо обыкновенное мышление, разговор и действие все же подходят к целостной и неисчерпаемой вещи с какой–нибудь одной или немногих сторон. Поэтому для реального употребления цельного мышления надо его дифференцировать, имея в виду только какое–нибудь одно независимое переменное. Тогда мы получаем не просто производную функцию, но именно т. н. частную производную. То, что в логике носит название понятия, есть именно эта частная производная от цельного отражения цельной материальной вещи по одному из тех независимых переменных, которые составляют данную вещь.
В самом деле, что такое, напр., понятие воды? Вода, если ее брать как существенное отражение подлинной материальной действительности воды, есть нечто бесконечное. Воду можно понимать физически, химически, производственно–технически, медицински, эстетически и т. д. и т. д. Таких пониманий—принципиально — бесконечное количество, ибо бесконечна сама объективная материальность воды. Но вот мы выбираем из бесконечного количества свойств воды только одну определенную группу свойств, напр. химическую. Но как это мы делаем? Процесс этот не такой простой. Мы ведь не сразу наталкиваемся на Н20 как на нечто готовое. Мы это Н20 должны найти, получить, высчитать. Мы наблюдаем известного рода явления, происходящие с водой, и подыскиваем для них те или иные мысленные отражения, т. е. так или иначе пробуем их фиксировать. И только среди этих бесконечных приблизительных и текучих процессов, происходящих с водой, мы начинаем видеть некую общность, а именно Н20, управляющую всеми отдельными химическими процессами, происходящими с водой. Поэтому химическое понятие воды есть предел и закон для бесчисленного количества соответствующих индивидуальных чувственных фактов. И так как наряду с химическим понятием воды могут быть и другие, то такое понятие мы и называем частной производной нашего общего понимания воды, отвечающего бесконечности самого материального бытия этой воды по одной из ее сторон, а именно, по ее химическому составу.
Конечно, и всякий, незнакомый с математическим анализом, может, употребляя данный термин в расплывчатом, обывательском значении, тоже говорить, что понятие получается из общего мыслительного процесса путем дифференцирования. Однако у обывателя это—ничего не говорящая общая фраза. Математический же анализ учит нас тут точности и строгости. Дифференцировать здесь означает: 1) взять вещь (воду) в ее непрерывном изменении, в ее бесконечно–малых нарастаниях; Ϊ) в том же виде взять и соответствующее ей мыслительное отображение; 3) взять отношение между тем и другим, которое, очевидно, тоже сплошно и непрерывно меняется (раз меняется и сама вода, и мысль о ней); 4) это отношение рассматривать, не беря всю вещь целиком, а только некоторый один из ее моментов; и, наконец, 5) отношение это, непрерывно становящееся, взять как ставшее, как завершенное, как предел. И вот этот–то предел и есть в данном случае химическое понятие воды как именно Н20. Имеет ли что–нибудь общее это логически развитое дифференцирование с тем смутным и нелепым пониманием дифференцирования, которое мы находили у обывателя? Если даже и не выдвигать все указанные признаки точного понятия дифференцирования, то во всяком случае необходимо помнить, что в логике понятие есть обязательно предел бесконечно приближающихся к нему чувственных представлений, которые, оставаясь чувственными представлениями, никогда не могут достигнуть понятия, но могут приближаться к нему с любой точностью. И поэтому чувственное представление вещи, в конце концов, тоже есть определенная функция самой же вещи. Но чтобы сохранить в целости всю логическую специфику чувственного представления, надо его понять как только некое приближение к пределу и надо эту предельную величину интегрировать, чтобы отсюда уже прямо перейти к самой вещи, интегрально данной в существенно отражающем мышлении.
Тут, однако, мы переходим к чрезвычайно важным категориям дифференциала и интеграла в логике, которым должно предшествовать развитое учение о логической сущности производной функции.