
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
§ 103. Продолжение.
Если мы пересмотрим основные определения в математике, относящиеся к учению о пределах, то нетрудно будет убедиться, что математика здесь также работает категориями, которые только что были развиты, хотя и формулирует их, конечно, чисто математически, а не диалектически.
1. Прежде всего стоит обратить внимание на интересное определение точки скученности, или точки сгущения. Для этого нужно знать, что такое окрестность. Если мы имеем некую точку А и имеем некую величину ε, могущую стать меньше любой заданной величины, то интервал А— ε…Α + г называется окрестностью точки А. Так вот, точка А называется точкой сгущения множества, если в любой сколько угодно малой окрестности А лежит еще бесконечное количество точек.
Так, для последовательности 1 , точкой сгущения является 0, а для последовательности, содержащей 0 и 1, а также числа, построенные по закону и 1+(при η целом и положительном), существуют две точки сгущения, а именно 0 и 1, в то время как числа , , будут здесь т.н. изолированными точками, т.е. в окрестности которых совсем нет точек данной последовательности. Это скромное на первый взгляд утверждение о точках сгущения по своему логическому составу предполагает решительно все те категориальные моменты предела, которые мы выше установили. Тут и антитеза внутреннего и внешнего, п[е]рекрытие окрестности внешним точечным слоем; тут и непрерывно алогически становящаяся отрицательность — в переходе от одной точки бесконечного множества к другой на исчезающе[185] малом расстоянии; тут и внутренняя дробящая сила — в допущении возможности бесконечного количества точек при прогрессирующем уменьшении окрестности; тут и определенная закономерность строения этого алогического скопления бесконечности — в расположенности точек на исчезающе малых расстояниях. Последнее—смысловая закономерность бесконечного скопления точек — в понятии точки скученности еще не так развито и поставлено, как в [прежних ] математических дефинициях, относящихся к пределу. Однако уже и здесь эта специфическая закономерность, порождаемая пределом, чувствуется вполне ощутительно.
Стоит только обратить внимание на то, что точка скученности в случае, когда она для данного бесконечного множества является единственной и потому и предел этого бесконечного <.··>>—как уже становится ясной вся важность этих рассуждений для понимания категориальной структуры предела вообще.
2. Более резко этот момент смысловой закономерности ряда, стремящегося к пределу, выражен в известной теореме Больцано — Вейерштрасса. Она гласит: «Каждое ограниченное бесконечное множество точек имеет по крайней мере одну точку скученности». Собственно, тут можно говорить и о неограниченном множестве, так как ничто не мешает находить еще новые точки и даже бесконечное их количество — в окрестности той точки, которая именуется бесконечностью. Другими словами, бесконечную точку тоже нужно считать точкой сгущения. Итак, имеется ли ограниченное или неограниченное множество, в нем всегда есть хотя бы одна точка сгущения, или скученности. Но что это значит? Это значит прежде всего, что тут мы представляем себе перекрытие некоей области, или интервала, бесконечным количеством точек; и, таким образом, уже по одному этому здесь у нас двухплановая структура, не считая момента, объединяющего эти два количественные плана, — т. е. опять тут все та же антитеза внутреннего и внешнего. Эта антитеза заполнена здесь непрерывным и алогическим становлением. И вообще тут обнаруживаются все те моменты, которые нами уже получены. Но тут гораздо ярче, чем в предыдущем понятии точки скученности, выражен момент структурного построения бесконечного множества. А именно, оказывается, что только тогда точки могут оказаться входящими в бесконечное множество, когда все они притягиваются к каким–нибудь центрам или хотя бы только к одному такому центру. Этот центр, или эта точка сгущения, определяет собою специальную структуру взаимного расположения точек, т. е. такую структуру, когда расстояния между точками исчезающе малы. Это есть вполне определенная структура множества; и вот она–то и предопределена пределом. Предел как бы издали располагает особым образом точки бесконечного множества; он есть как бы принцип построения того числового поля, которое именуется данным бесконечным множеством.
3. Еще ярче эта принципная природа предела выражена в признаке Кохии для сходимости ряда, т. е. для наличия в данной последовательности предела. Как известно, признак, установленный Коши для сходимости ряда, гласит следующее. Пусть мы имеем последовательность
<u1, u2, un>
где [N] может стать сколько угодно большой величиной. Если абсолютное значение любой разницы <un—um> может стать меньше сколь угодно малого количества [ε], то упомянутый ряд сходится. Или, точнее, как бы мало ни было [ε], должно существовать такое [Ν], чтобы для всякого <η>Ν> и для всякого <m>N> было
</un—um/<ε>.
Это условие необходимо и достаточно для сходимости ряда. Предел, стало быть, превращает последовательность чисел в такую упорядоченность, что между двумя его достаточно далекими от начала членами разность может стать менее любой заданной величины. Он создает последовательность как некую текучую иррациональность, распределенную так или иначе в зависимости от числовой величины предела. Упомянутая закономерность и перво–принципность предела на учении Коши о признаке сходимости заметна еще ярче, чем в предыдущих примерах.
4. Особая, специфическая структура сходящегося ряда, выраженная как некий определенный принцип, хорошо, — пожалуй, даже лучше, чем у Коши, — формулирована в признаке сходимости Даламбера. Как известно, по Даламберу, сходимость будет в случае, когда предел отношения между соседними членами ряда <un+1> и <un> при <n→∞>, будет выражаться правильной дробью
при <q< 1) — ряд сходится; когда (q>l) — ряд расходится; когда <q= 1) — ряд неопределенный в смысле сходимости. Тут дано представление о подвижном отношении, пробегающем по ряду и рисующем его определенную полную структурность, зависящую от характера предельной устремленности этой структуры.