
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
§ 87. С) Порядковость.
1. С другой стороны, это множество единиц получает упорядочение с точки зрения применения категории подвижного покоя. Подвижной покой заставляет двигаться по нашим единицам и, останавливаясь в том или другом месте, делать обзор пройденного пути. Это ведь и есть подвижной покой. Но тут возникает одна категория, которую необходимо отметить специально. Это категория порядковости. Когда мы говорим «первый», «второй», «третий» и т. д., то явно, что здесь мы находимся в области инобытия. Если я скажу «зеленый», то это может относиться только к тому, что не есть самый зеленый цвет, а только к каким–нибудь другим предметам, где этот цвет присутствует. Всякие зеленые предметы приобщаются к зеленому цвету, но не суть самый зеленый цвет, не суть сама зеленость. Значит, «первый», «второй» и т. д. не суть бытие (бытие — это единица[124], двойка и т. д.), но инобытие (инобытие, приявшее на себя значение от бытия).
Но «первый», «второй» не есть просто инобытие единицы и двойки; это особого рода инобытие. Именно, тут предносится идея следования [одного] за другим, принцип постепенного движения. Если бы не имелась в виду эта идея, то вместо «первый» мы бы говорили «одинарный», вместо «второго» — «двойной», вместо «третьего» — «тройной» и т. д. Во всех этих заменах мыслится инобытие внутри самого бытия: «двойной» — это такой, который сам по себе есть нечто одно и цельное, но он состоит из двух частей. Здесь функция инобытия сведена на различенность внутри самого предмета. И совсем другое дело в случае порядковых числительных. Здесь, во–первых, инобытие дано не внутреннее, а внешнее: единица должна внешне осуществиться на каком–нибудь инородном материале. И так как внешнее инобытие не связано с устойчивой сущностью бытия (как связано инобытие внутреннее) и всегда находится в неустойчивом и становящемся виде, то функция его в данном случае проявляется в аспекте подвижного покоя. «Второй»— это значит не только «иной», «другой», но такой «иной», который был «одним», потом изменился и стал другим и в этом своем новом виде остался в сущности тем же самым, что и раньше. Значит, «второй» — тот, который передвинулся и, передвинувшись, остановился. Я пересчитываю груши. Когда я сказал «вторая» груша, это значит, что «груша вообще» была положена раз, потом эта же самая «груша вообще» положена еще раз. Следовательно, «второе» в каком–то отношении тождественно с «первым». В каком же? Очевидно, в том, что «второе» так же покоится, как «первое». С «одного» мы перешли к «иному», но вместо того, чтобы распространяться и растекаться по безбрежному полю инобытия, мы останавливаемся в каком–нибудь определенном месте иного и предаемся покою. В этом и устанавливается тождество между «одним» и «иным», и «иное» оказывается не просто «иным», но «вторым».
2. а) Нужно отчетливо представлять себе, почему именно категория подвижного покоя в данном случае обусловливает собою появление порядковое™. Пусть мы двигались с точки А в точку В, и с точки В в точку С, и с точки С в точку D. Это движение. Но вот начинает действовать категория покоя. Мы останавливаемся на точке D и тем кончаем наше движение. Кроме того, и весь путь наш A BCD как бы останавливается, мы его как бы фиксируем, задерживаем[125] и пересматриваем в том или другом, в любом направлении. Получается, что путь ABCD есть такой–то и такой–то путь — напр., такая–то кривая или ломаная линия, — что в нем отдельные точки следуют в таком–то порядке, что они расположены таким–то и таким–то образом. Ясно, что идея порядка есть в данном случае результат применения категории подвижного покоя. Эта категория фиксирует все особенности пройденного пути и тем утверждает порядок следования особенностей этого пути.
b) Наконец, надо иметь в виду и еще одно свойство этой категории, которое тут проявляется очень заметно. В то время как тождество и различие утверждают разные точки и отдельные области в сфере применения этих категорий, категория подвижного покоя впервые делает возможным переход от одной такой точки или области в другую точку или область, впервые делает возможным пересчет всего различного, что в данной структуре установлено. Не будь подвижного покоя, различествующие моменты эйдоса так и остались бы в мертвой взаимно–изолированности, и из ничего не составилось бы целого. Выражаясь несколько грубее, подвижной покой впервые делает возможным существование признаков данной структуры, ибо то, из чего состоит данная структура, при условии возможности точного его пересчета и есть не что иное, как сумма признаков данной структуры. Поэтому такой признак, или качество, язык обычно обозначает при помощи имени прилагательного. Порядковое числительное (которое, конечно, есть вид имени прилагательного) указывает один (и основной) такой признак, содержа под собой в качестве принципа эту категорию подвижного покоя.
3. Итак, порядковость возникает как диалектический результат следующих моментов.
Во–первых, порядковость осуществляется в инобытии единицы, потому что «первый» — это значит, что есть какой–то предмет или вещь, которая сама по себе не единица, но отражает, воплощает на себе единицу. Однако такие категории, как «одинарный», «двойной» и т. д., тоже предполагают инобытие единицы, двойки, и, значит, общее указание на инобытие слишком широко и недостаточно.
Во–вторых, для получения порядковое™ необходимо, чтобы инобытие единицы воплотило на себе кроме общего бытия, которое оно на себе воплощает (единица), специально из него категорию подвижного покоя. Эта категория создает в инобытии идею фиксированной последовательности, которая, в сущности, и есть первое установление порядка следования единиц одна за другой.
Это установление порядковости, в–третьих, в силу особенностей той же категории подвижного покоя (рождать возможность одного или нескольких признаков) превращает порядковость в некую признаковость, в некое свойство, или качество, инобытия, определяемого здесь через участие в единице, двойке и т. д. Поэтому ярче всего порядковость выражается при помощи особых прилагательных, носящих в традиционной грамматике название имен числительных порядковых.