
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
§ 76. Понятие функции[111].
1. Как суждение относится к определению, так умозаключение относится к суждению. Все же это есть повторение того, как суждение относится к понятию и как, наконец, понятие — к своему перво–принципу. Везде тут главным условием появления новой категории является акт полагания предыдущей категории. Перво–принцип полагает себя — образуется понятие, поскольку последнее есть совокупность признаков (т. е. некая определенность, т. е. ограниченность, т. е. положенность) и исчерпание, различение того, что само по себе неразличимо. Понятие полагает себя — образуется определение, в котором подчеркнута эта его исчерпанность. Определение полагает себя — образуется переход к становящемуся перечислению признаков, или суждение. Суждение образует себя — образуется умозаключение.
2. Когда высказывается: «Все идеалисты — контрреволюционеры», то это значит, что на общем фоне контрреволюции полагается понятие идеализма; отсюда это суждение об идеалистах. Сначала было положено понятие контрреволюции, и из этого получилось отграничение· контрреволюции ото всего другого, и тем самым в проведенных границах образовалась возможность появления отдельных видов контрреволюции. Тут могли быть архиереи, проститутки, кантианцы, фабриканты, содержатели притонов и пр. и пр. Мы совершаем некий определенный акт полагания в этой общей, но строго отграниченной области и получаем специальный вид контрреволюции — идеализм. Но пусть теперь мы положим не понятие, а некое содержание, — напр. суждение «все идеалисты — контрреволюционеры». Это значит, что мы очертили, отграничили новую область* которая благодаря именно своей огграни–ченности оказывается склонной к дроблению, к дальнейшему выявлению деталей. Среди идеалистов могут оказаться Деборины, Лупполы, Лосевы и т. д. Если мы совершим какой–нибудь акт полагания уже в этой только что отграниченной области, то это сейчас же приведет нас не к суждению (которое мы уже имели), но к совершенно иному логическому построению, к умозаключению. И мы получим:
Все идеалисты — контрреволюционеры.
[Лосев ] — идеалист.
[Лосев ] — контрреволюционер.
В умозаключении (так же, как и относительно суждения) возможна большая расчлененность. Суждение может быть взято как исчерпанность всего смыслового содержания полагаемого понятия; тогда это не суждение, а определение. В первоначальной диалектической конструкции этому соответствует не становление вместе с тем, что именно участвует в становлении, но чистое становление, чистые акты полагания (независимо от полноты или неполноты полагаемого содержания). Точно так же и умозаключение. Оно может быть взято вместе со всем своим конкретным содержанием и может быть взято чисто инобытийно, просто как формальная объединен–ность двух или ряда суждений, просто как вообще положенность суждения. Этому будет соответствовать в первом случае ставшее вместе с тем, что именно тут «стало»; и во втором — чисто ставшее, чистый факт перехода от одного суждения к другому (независимо от того, каково именно смысловое содержание фиксируемой ставшести).
Если перво–принципу соответствует числовой перво–принцип, неразличимое перво–число, принципу (или понятию)— категориальная структура числа, определению — аксиоматика, суждению — отдельная математическая операция, определенному умозаключению — теорема вместе со своим доказательством, то чистому, голому умозаключению, из которого исключено все смысловое содержание и в котором оставлена только формальная последовательность суждений или актов полагания, этому умозаключению соответствует в математике понятие функции.
3. Когда мы пишем в математике
[y = f (x)] —
что мы имеем в виду? Мы просто имеем в виду, что с χ производится ряд действий. Пусть у = 3х2 + 5. Это значит, что мы возводим χ в квадрат, умножаем его на 3 и к этому прибавляем еще 5. Совокупность всех этих действий с χ и есть функция х. Но нужно ли для этого знать количественное значение χΊ Это совершенно не необходимо. Когда мы говорим, что у есть функция χ, то этим мы как раз хотим сказать, что независимо от количественного значения χ [величина] у именно вот таким, а не иным образом зависит от х. Функция и есть эта зависимость между у их, рассматриваемая совершенно без всякого учета их количественного содержания.
Ясно, что это та же картина, что и в чистом умозаключении. Беря чистое умозаключение, мы оперируем только с формальной последовательностью суждений; и так как в диалектическом смысле суждение есть становящееся полагание, то умозаключение как объединенность разных становлений есть, очевидно, не само становление, но его результат, т. е. не становление, а ставшее или, как еще иначе называют в диалектике эту категорию, наличное бытие. Это акт полагания как ставшее. Если бы мы имели в виду все смысловое содержание данного акта полагания, то нам пришлось бы выставить много разных суждений и, точно соблюдая их последовательность, дать такой вывод, который в точности бы соответствовал исходному акту полагания. Тогда это было бы доказательством исходного положения. Таково доказательство любой математической теоремы. Но мы тут отвлекаемся от смыслового содержания данного положения, и его законченное доказательство рассыпается на ряд отдельных умозаключений.' Это и суть не [что] иное, как отдельные функции.
В функции д> = Зх2 + 5 мы задачей имеем такие умозаключения:
1) у зависит от χ,
но χ тут взят как х2. След., у зависит от х2,
2) у зависит от л:2,
но х2 взят тут как Зл:2. След., у зависит от Зл:2;
3) у зависит от Зл:2,
но Зл:2 взято здесь как Зх2 + 5. След., у зависит от Зл:2 + 5.
Это наглядно показывает нам, что логическая сущность функции есть умозаключение. Функция есть строгое инобытие числа, и, вернее, не числа, а числовой операции. Само число — непосредственно; числовое, т. е. арифметически–числовое, бытие есть непосредственная числовая значимость. Числовая операция есть также бытие непосредственное. Таков натуральный ряд чисел и все арифметические числа вообще, таковы и все арифметические операции. Когда мы говорим «2» или «10» или «3 + 5» или <ά> и пр., мы оперируем с непосредственным бытием, с непосредственной числовой значимостью. Когда же мы переходим к функции, то как раз эта непосредственная числовая значимость и пропадает. Число превращается в то, о чем ровно никакого суждения не высказывается в смысле непосредственной значимости, превращается в то, что может иметь такое <…> непосредственное значение, в х; и все действия, которые над этим χ производятся, суть действия опосредствованные, т. е. без всякого числового результата. Потому и действия эти, будучи сами по себе тоже бытием непосредственным (если их брать самостоятельно), становятся здесь характеристикой опосредствованной значимости бытия, чем–то в глубочайшем смысле инобытийным в отношении числа и числовых операций. Это судьба чисел в инобытии, взятая без всяких чисел; голая фактическая (потому здесь — «ставшее») положенность числа и его операций — без непосредственной данности самих чисел.
Итак, совершенно точно нужно сказать, что функция есть число, взятое как чистое умозаключение вне всякой непосредственной значимости того, что участвует в дан–ном умозаключении. Непосредственная же значимость числа, данная как заполненное определенным содержанием умозаключение, есть уже не функция, а доказанная теорема.