
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
§ 62. Взаимодействие аксиом едино–раздельности и становления.
1. Достигнутая нами ступень числового становления имеет значение не только сама по себе, но она получает новое глубокое значение и в смысле взаимоотношения с предыдущей группой аксиом. Дело в том, что отвлеченно–диалектическое становление, математически специфицируемое в категорию непрерывности, будучи приложено к аксиомам предыдущей группы, впервые делает возможной разнообразную их модификацию — соответственно своей принципиальной алогичности, а предыдущие аксиомы едино–раздельности, будучи приложены к чистому алогизму непрерывности, впервые делают возможным получение различных новых оформлений уже из этого алогического материала непрерывности.
Остановимся сначала на воздействии, получаемом от аксиом непрерывности аксиомами едино–раздельности в арифметике.
2. а) Что касается арифметических аксиом едино–раздельности, то их видоизменение в зависимости от категории становления выясняется тотчас же, как мы вникнем в сущность становления, инобытийного, как мы знаем, в отношении идеального. Становление потому и есть становление, что оно есть выход смысла наружу, самоотчуждение смысла. Его мы поэтому называем еще алогическим. Алогичность в том и заключается, что она вносит вне–логический принцип. Так, например, идеальная структура логически предполагает категории различия, тождества, движения и пр. вида <…> привходит алогический принцип, то он может на любом моменте приостановить логическое следование категорий и, следовательно, взять их в какой угодно комбинации, в какой угодно несвязанности. С другой стороны, только если целиком проводить принцип становления, или непрерывности, можно поручиться, что все логически выведенные категории действительно имеют реальный смысл. Ибо может оказаться, что логически–то мы вывели их правильно, а реально они осуществляются частично и враздробь. Итак, категория непрерывности, примененная к категориям едино–раздельности, впервые ставит вопрос об их реальном и совокупном действии, впервые исследует формы осуществления всех категорий, из которых диалектически выросло число.
b) Имея это в виду, можно исследовать полученные нами до сих пор аксиомы. Скажем вообще, что результатом этого исследования должно явиться учение об арифметических операциях, действиях. Больше всего это понятно на аксиоме самотождественного различия (§ 25). Если эта аксиома гласит, что из всяких а и b составляется некое вполне определенное с, то в этом смысле она еще не была учением об арифметической операции сложения. Эта аксиома, если ее брать в строгом и собственном смысле слова, гласит только, что всякое число есть некая составленность из каких–нибудь единиц–элементов. Тут ставилось ударение на самой этой составленности, на ее результате, на с, а не на а + b. Чтобы сосредоточиться не на результате составленности, а на самом процессе этого составления, нужно мыслить себе некий алогический фон, на котором и развертывалась бы эта картина процесса составления, т. е. необходимо выдвижение на первый план момента становления. Поставивши акцент именно на становлении с, на самый процесс складывания а + bу мы и получаем категорию арифметического сложения (и, стало быть, вычитания).
Также можно было бы показать, что раздельное применение категории подвижного покоя дает операции умножения и деления, а применение на[41] категории определенности — операции возвышения в степень, извлечения корня и логарифмирования. Однако мы не будем тут производить этих дедукций, так как им посвящается в дальнейшем специальный отдел диалектики арифметики; и это было бы уже превращением аксиоматики в диалектику уже реального состава науки, чего следует избегать. Аксиоматика только дает, как мы говорили, перспективу на науку, а не самое содержание науки.
c) Однако уже тут мы видим, что приложение принципа непрерывности к аксиомам едино–раздельности дает нам в руки очень важное орудие. Прежде всего мы получаем возможность рассматривать полученные категории в их процессуальном становлении. Мы получаем возможность осуществлять каждую полученную категорию в ее изолированном виде, отвлекаясь от ее логической связи с другими категориями (потому–то становление и есть алогический принцип). Мы, наконец, впервые получаем возможность взять все их и вместе, в то время как раньше они только логически предполагали одна другую. В частности, не что иное, как именно принцип непрерывности и становления, дает возможность распространить законы ассоциативности, коммутативности и дистрибутивности на всю сферу арифметических чисел. Раньше речь могла идти только о самих законах как таковых, теперь речь идет об их всеобщей приложимости, вытекающей из того только, что тут мы имеем дело вообще с арифметическим числом.
d) Впрочем, если гнаться за логической точностью и последовательностью, то, в сущности говоря, на рассматриваемой диалектической ступени мы еще не имеем права говорить о законах счета в полном объеме, хотя они уже выведены, и притом еще на предыдущей — едино–раздельной ступени. Дело в том, что вся едино–раздельная ступень есть ступень только идеального смысла, если под реальным понимать непрерывное или прерывное ее осуществление. Этим мы действительно вывели как арифметическое действие, так и законы счета (т.е. законы ассоциативный, коммутативный и дистрибутивный). Однако, согласно общему идеальному характеру сферы едино–раздельности, нужно считать, что там выведена только категория арифметического действия и категория законов счета. Теперь, когда мы стоим на базе непрерывности, мы можем превратить эту отвлеченную категорию действия и закона счета в реальные действие и счет. Реальное действие предстает перед нами в виде многочисленных арифметических операций. Однако представить себе тут же в развитой форме и законы счета как всеобще–значимые мы еще не можем, так как здесь мало одного принципа непрерывности. Ведь последний гласит только о непрерывном следовании и равномерном развертывании идеальной, едино–раздельной структуры, но еще ничего не говорит о комбинирующих функциях этой непрерывности. Для того чтобы складывать, умножать и пр., нужно только знать, что счет как идеальная значимость, т.е. попросту счет как перебегание по натуральному ряду чисел, зависит только от своих количественных заданий и что самая эта операция ровно ничего от себя не привносит в эти последние. Это только и содержится в арифметической аксиоме едино–раздельности, и это с привнесением принципа непрерывности разветвляется на отдельные типы арифметических операций. Когда же ставится вопрос о законах счета (в смысле ассоциативности, коммутативности и дистрибутивности), то тут надо кроме этого еще быть уверенным, что не только самая операция не привнесет ничего нового в сравнении со своими количественными заданиями, но ничего нового не привнесет и тот самый натуральный ряд чисел, путем пробегания по которому вперед и назад мы осуществляем данную операцию. Позже (§ 65) мы увидим, что эта уверенность возникает только на основе аксиомы конгруэнтности> которая только впервые и обеспечивает полное и безразличное осуществление и использование в арифметике законов счета, которые, однако, в виде идеальной и отвлеченной структуры выведены уже на ступени едино–раздельности.
3. Далее, в геометрии мы получаем, очевидно, разные фигуры, образец выведения которых дан выше, в § 55. Если там была дана и общая дедукция фигуры, то здесь ввиду наличия реального континуума необходимо говорить уже об их осуществлении, в то время как прочие категории (конгруэнтности, метрики и пр.) в дальнейшем еще более специализируют у нас наше геометрическое построение.
4. В теории множеств соответственно мы находим учение об искомых операциях, которые, как это и должно быть, вполне специфичны, как специфичны и способы построения геометрических фигур, хотя, в сущности, это есть только разная комбинация на основе непрерывности все так же основных категорий идеальной едино–раздель–ности.
a) Так что понимается в теории множеств под сложением! Это такая операция, в результате которой 1) каждый элемент из нового множества ( = из суммы) принадлежит какому–нибудь из слагаемых множеств и 2) всякий элемент любого слагаемого множества принадлежит новому множеству. Сумма тут есть единственное вполне определенное множество. Надо строго различать множество самих слагаемых и множество их элементов. Элемент слагаемого есть элемент и суммы, но само слагаемое не есть элемент суммы, а только его часть (потому что одно множество есть часть другого, если все его элементы принадлежат к этому последнему). В связи с этим надо точнейшим образом себе уяснить, что множество ни в коем случае не есть сумма своих элементов. Представление о множестве как сумме возникает только при условии наличия слагаемых как множеств, так что сумма есть всегда сумма множеств, а не сумма элементов, или, иначе, множество есть сумма всех любых множеств из его элементов (особое множество—то, которое состоит только из одного элемента). При «нулевой ино–бытийности» арифметического числа эти свойства сложения не были так ярко выражены в арифметике. В теории же множеств, которая вся строится на идее специфического порядка, различие между элементом и частью обладает принципиальным значением даже в такой простейшей операции, как сложение. Категория самотождественного различия дана тут более выпукло потому, что она осуществлена на материале континуума, хотя континуум тут и вобран в само число и внутренно отождествлен с ним (что и породило собою, как мы знаем, самую категорию множества).
b) Еще яснее можно видеть осуществление категории подвижного покоя, именно — в т.н. умножении. В теории множеств произведением системы множеств называется множество таких элементов, из которых каждый принадлежит одному какому–нибудь множеству данной системы, а в каждом множестве данной системы есть один, и только один, элемент, входящий в это первое множество. Таким образом, здесь мы имеем в виду, собственно говоря, взятие общей части, потому что здесь берется множество тех элементов, которые являются общими для всех данных (перемножаемых) множеств. В то время как для сложения и вычитания достаточно было только растянуть все элементы слагаемых в одну, так сказать, линию (забывши, что такое множество каждого из таких слагаемых) и рассматривать полученные элементы как нечто целое и тем самым модифицировать категорию самотождественного различия с точки зрения непрерывности, здесь, в умножении, мы должны сначала сравнивать перемножаемые[42] множества, перебегая от одного к другому, с целью достигнуть успокоения, которое только тогда и может быть получено, если мы в результате этого сравнения получим нечто общее, одинаковое. И тогда, сколько бы мы ни бегали, мы будем бегать только, так сказать, в одном и том же круге, т. е. будем, в сущности, стоять на месте. Это–то и есть теоретико–множественное понимание «умножения».
5. Теория вероятностей также обладает рядом операций, которые в смысле отвлеченного принципа ничем не отличаются от категорий идеальной едино–раздельности, но которые по своему видоизменению в связи с принципом непрерывности приобретают ряд оригинальных черт, усиленных, конечно, кроме того, еще и своеобразием самой теории вероятностей. Тут мы имеем теорему сложения вероятностей: если событие [А ] состоит в поступлении одного из двух несовместимых фактов а и b, причем вероятность а=рх и вероятность b=р2, то вероятность Α=ργ+ρ2. Тут мы имеем теорему умножения вероятностей, касающуюся уже совместимых событий: вероятность совмещения событий А и В равна произведению вероятности события А на вероятность, которую приобретает событие В, когда становится известным осуществление факта А. Некоторым осложнением тех же категорий является, например, понятие математического ожидания, равного алгебраической сумме произведений каждого возможного значения данной величины на его вероятность, причем для математических ожиданий существует также своя теорема сложения. Имеет полную реальность и возведение вероятности в степень (когда исчисляется вероятность осуществления определенного числа из рассматриваемых событий при указанном числе опытов). И т.д.