
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
§ 56. Аксиома определенности (закона) бытия в теории множеств.
1. Закон бытия, или метод определенности, дает схему, по которой объединяются отдельные моменты в цельную совокупность. Арифметический закон такой объединенности есть вне–инобытийная, или, как мы говорим, инобытийно–нулевая схема. Тут числа объединяются вне своего специфического порядка и размещения. В геометрии — обратно. Геометрия изучает пространственные построения. Как таковые, они не могут не содержать в себе идеи упорядоченности. Когда мы говорим, например, о треугольнике, то никакое понятие трех, взятое в своей арифметической чистоте, никогда не даст представления о треугольнике. Тут входит принцип инобытий–ного взаиморасположения трех отвлеченных единиц. В теории множеств мы возвращаемся опять к арифметической вне–инобытийности, но эта вне–инобытийность не абсолютна в своей абстрактной изоляции, а содержит в своем смысловом составе разнородную упорядоченность, заимствованную из геометрической инобытий–ности. Можно противопоставлять, например, некую отвлеченную идею и реальную вещь, и они будут противоположностью чистого смысла (или чистого бытия) и отрицания смысла (инобытия). Однако можно сконструировать образ, который появится как полный синтез и неразличимость того и другого. Этот образ будет, с одной стороны, чистым смыслом, и никакой вещественности в нем не будет. С другой стороны, он будет разрисован и скомбинирован так, что окажется полной копией вещи, буквальным повторением всей той упорядоченности и взаиморазмещенности, которую дала вещественно–пространственная форма. Одно дело — отвлеченная идея постройки, другое — конкретно–построенный дом, а третье — это технический план и проект дома, где нет ни абстрактного смысла, ни полной вещественности, но есть овеществленный смысл и осмысленная вещественность.
Эта примитивная диалектическая установка, без которой нигде в диалектике нельзя обойтись, является в нашем случае основой и принципом рассуждения. Определенность бытия во множестве есть именно совмещенность арифметической нулевой инобытийности и геометрического пространственного упорядочения. Получается особого рода упорядоченность, которую нужно назвать теоретико–множественной и которая в одинаковой мере и совпадает с арифметической и геометрической, и отличается от них.
Аксиома определенности (закона) в теории множеств: множество есть совокупность элементов, появляющаяся в результате операций над теми или другими совокупностями при инобытийно–нулевой значимости их взаимораспределения, — после их возвращения, однако, из инобытия к самим себе. Или: множество всегда содержит в себе свой тип.
2. Последний термин «тип» математики ввели в теорию множеств недаром. Правда, обычное употребление этого слова исключительно формально–логично. Когда говорят «два типа карандашей», «три типа построек» и проч., то «тип» равносилен термину «вид» или «род». В теории множеств, однако, этот термин приобретает совсем другое содержание, возвращающее нас к античности, и, в частности, к греческому языку. «Тип» — от греческого глагола τύπτω — «бью», «выбиваю»; «тип» — то, что выбито, высечено, — например барельеф. В теории множеств тип есть наглядно данная фигурность числа, специфически выраженная целостность числа. Хотя сами математики большею частью и не отдают себе в этом отчета, но уже с самого начала ясно, что именно такого рода интуиции были здесь направляющим принципом.
Достаточно указать на то, как определяется «тип» в теории множеств. Тин, говорят, есть то, что обще множествам, подобным между собою. Это определение очень характерно. Поскольку подобие вытекает из возможности взаимоналожения, а взаимоналожение предполагает одинаковость распределения, одинаковую упорядоченность элементов данных множеств, то, разумеется, общее между двумя одинаково внутренне распределенными множествами может быть только сама же эта, в общих случаях тождественная, распределенность. Я в этих случаях говорю проще: тип есть просто какая–нибудь определенная числовая фигурность. Элементы расположены так, что они, вместе взятые, образуют некую фигурность, хотя она и не геометрическая, но чисто числовая же, и это–то и есть тип множества. Ведь не обязательно гипостазировать идею порядка чисто пространственно. Абстрактно–числовые акты полагания тоже могут быть различным образом взаимораспределен–ными. Эту чисто числовую взаиморасиределенносгь элементов и изучает теория множеств под видом учения о типах.
Итак, всякое множество принципиально содержит в себе свой тип. Всякое множество принципиально всегда есть результат некоего специфического упорядочения. Если аксиома подвижного покоя требовала, чтобы всякое множество мыслилось как вполне упорядоченное множество, то аксиома определенности бытия требует, чтобы результатом этого упорядочения была определенная фигурность множества, которая и есть настоящий закон определенности множества, т. е. правило его конструирования из элементов.