
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
§ 5. История наук о числе.
Но и этим не кончается цикл основных наук, изучающих математику. Остается еще один шаг—и мы можем закончить дальнейшее продвижение принципиально–математической мысли. Дело в том, что философия числа, хотя она и вбирает в себя весь исторический материал математики, отнюдь еще не есть сама история математики. Философия числа все же есть пока еще только теоретическая наука. Она теоретична в той же мере, в какой теоретичны и те две области, синтезом которых она является, т. е. психо–биологии и социологии. Вся эта основная триада: 1) чистая математика, 2) математическое естествознание и 3) философия числа (возникающая как диалектический синтез двух только что упомянутых дисциплин)—суть общая теория числа, построенная в значительной части на историческом материале, но сама отнюдь не является историей. Нужно, чтобы вся эта триада перешла в свое инобытие, чтобы она была вовлечена в инобытийный процесс становления; и только тогда мы достигнем последней и окончательной конкретности — истории. В истории ведь никакая идея не дается сразу. Если взять хотя бы математический анализ, то его теперешняя форма слишком резко отличается от построений Ньютона и Лейбница., чтобы можно было не говорить об истории в математике. А только тогда, когда математика взята не вообще, а именно так, как она есть, реально у данного математика в таком–то его сочинении, только тогда математика достигает своей последней конкретности.
Поэтому вся построенная нами математическая триада наук погружается во временной поток, в инобытие, в становление, как бы отчуждается от своей законченности и завершенности и воплощается в то, что эмпирически кажется таким случайным, разорванным и клочковатым. Бояться этого, однако, не стоит, потому что законченность эта была чисто теоретическая, а теория не может быть никогда чем–то абсолютно законченным, пока не закончилась сама история, рождающая и определяющая эту теорию. Один из основных провалов у Гегеля— то, что свою философию и свою эпоху он считал абсолютным завершением своего Абсолюта. Наше самочувствие гораздо скромнее. Мы претендуем только на то, чтобы теория адекватно осмыслила современный результат исторического развития человечества, а последний или не последний это результат, вопрос этот не может решаться в философии.
§ 6. Общая схема диалектического разделения основных наук о числе.
Таким образом, возникает следующее диалектическое разделение наук о числе: I. Чистая математика.
II. Математическое естествознание.
III. Число как факт духовной культуры:
a) психо–биология числа,
b) социология числа,
c) философия числа.
IV. История всех предыдущих дисциплин.
§ 7. Разделение философии числа.
Настоящее сочинение посвящено философии числа. В преддверии этого огромного задания необходимо ориентироваться в самых общих проблемах этой науки, так как только строжайшая систематика и логическая методология могут спасти нас от головокружения в этой необозримой массе научного материала. Попробуем наметить основные вехи предстоящего исследования.
Эти вехи диктуются только что выведенной схемой. Устанавливая эту схему, мы уже начали заниматься философией числа. Предложенное разделение наук должно быть проведено и в области самой философии числа с вышеописанным изменением каждой отдельной научной методологии на чисто логическую. Таким образом, должны возникнуть следующие отделы философии числа.
I. Прежде всего, философия чистой математики, или логическое конструирование науки о числе, взамен ее чисто числовых конструкций.
И. Философия математического естествознания, обследование форм физически–математической значимости числовых категорий и операций.
III. Философия числа как факта духовной культуры с подразделением на философскую психо–биологию и социологию и, наконец, на теорию философии числа, или методологию. Философия философии числа есть теория философии числа, т. е. ее методология, т. е. теория диалектического метода.
IV. Философия истории наук о числе, практически сводящихся на диалектическое построение истории всех относящихся сюда дисциплин.
В сущности говоря, философия всех этих дисциплин — математики как таковой, математического естествознания и культурно–социальной науки о числе—должна бы сливаться с самими этими дисциплинами, поскольку она есть только более интимное, более связное логически и более понятийное построение тех же самых предметов. И в некоторых областях уже невозможно обойтись без философского метода. Тем не менее необходимо давать полную свободу развитию отдельных наук, предоставляя последним право рассматривать свой предмет своими специфическими методами. Из того, что математик, хорошо интегрирующий дифференциальные уравнения, не владеет логикой своего метода и не отдает себе отчета в диалектической природе своего интегрирования, совсем не следует, что ему во что бы то ни стало нужно заниматься диалектикой и что без этой диалектики он вообще не ученый. Математика есть математика, и предмет ее, хотя и вполне абстрактный и формальный, все же совершенно своеобразен и может быть построяем как таковой. Хорошо, конечно, если математик станет диалектиком; диалектика подскажет ему то, что он не мог проследить чисто математически, так что помимо самой логики числа он получит еще нечто новое и в чисто математической области. Хорошо также, если бы эти две области, математика как таковая и ее логика, или диалектика, слились бы вместе до полного синтеза. Однако до известного и притом очень далекого предела эти две области могут строиться и развиваться совершенно отдельно. И поэтому теоретическое разделение их вполне целесообразно.