
- •Введение (общее разделение наук о числе)
- •§ 1. Первая противоположность: чистая математика и математическое естествознание.
- •§ 2. Число как факт духовной культуры.
- •§ 3. Психо–биология и социология числа.
- •§ 4. Философия числа.
- •§ 5. История наук о числе.
- •§ 6. Общая схема диалектического разделения основных наук о числе.
- •§ 7. Разделение философии числа.
- •§ 8. Диалектические основы математики.
- •§ 9. Разделение их.
- •Общая теория числа
- •§ 10. Вступление.
- •I. Отграничения (установка числового перво–принципа)
- •§ 11. Число не есть ни что–нибудь вещественно–качественное, ни вообще объективное.
- •§ 12. Число не есть что–нибудь субъективное.
- •§ 13. Число относится к чисто смысловой сфере.
- •§ 14. Число и понятие.
- •§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.
- •§ 16. Число, количество и величина.
- •II. ФундаментаЛbНый анализ числа (число как чистое понятие)
- •§ 17. Первая установка.
- •§ 18. «Нечто» и переход его в «это».
- •§ 19. «Иное этого»; различие, тождество, движение, покой.
- •§ 20. «Ничто» и абсолютно самотождественная неразличимость актов полагания—перво–принцип числа.
- •§ 21. Основная диалектика понятия числа.
- •§ 22. Аналогии.
- •§ 23. Основа всего — диалектическая жизнь перво–ак–та.
- •§ 24. Проверка на функциях натурального ряда.
- •§ 25. Проверка на отдельном числе.
- •§ 26. Диалектика различия, тождества, движения и покоя в числе.
- •§ 27. Формула понятия числа.
- •§ 28. Сущность числовой модификации общесмыслового эйдоса.
- •§ 29. Отграничение понятия числа сверху.
- •§ 30. Отграничение понятия числа снизу.
- •§ 31. Итог фундаментального анализа.
- •III. Основные аксиомы числа (число как суждение)
- •§ 33. Сущность математической аксиоматики.
- •§ 34. Разделение всей общей теории числа и место аксиоматики в ней.
- •§ 35. Общая основа всех аксиом.
- •§ 37. Неразличимость как принцип различимости.
- •§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
- •§ 39. Самосозидание.
- •§ 40. Везде и нигде.
- •§ 41. Число и время.
- •§ 42. Число и музыка.
- •§ 43. Формула перво–принципа.
- •§ 46. Аксиома самотождественного различия в геометрии.
- •§ 47. Аксиома самотождественного различия в теории множеств.
- •§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.
- •§ 49. Аксиома самотождественного различия в теории вероятностей.
- •§ 51. Аксиома подвижного покоя в геометрии.
- •§ 52. Аксиома подвижного покоя в теории множеств.
- •§ 53. Аксиома подвижного покоя в теории вероятностей.
- •§ 55. Аксиома определенности (закона) бытия в геометрии.
- •§ 56. Аксиома определенности (закона) бытия в теории множеств.
- •§ 57. Аксиома определенности (бытия) в теории вероятностей.
- •§ 58. Общий результат аксиом идеальной едино–раз–дельности числа.
- •§ 60. Аксиоматическая диалектика непрерывности.
- •§ 61. Аксиома непрерывности в отдельных математических науках.
- •§ 62. Взаимодействие аксиом едино–раздельности и становления.
- •§ 63. Продолжение.
- •§ 65. Аксиома ставшего числового бытия в арифметике.
- •§ 66. Аксиома ставшего числового бытия в геометрии.
- •§ 67. Аксиома ставшего числового бытия в теории множеств.
- •§ 68. Аксиома ставшего числового бытия в теории вероятностей.
- •§ 70. Аксиома выражения в арифметике.
- •§ 71. Аксиома выражения в геометрии.
- •§ 72. Аксиома выражения в теории множеств.
- •§ 73. Аксиома выражения в теории вероятностей.
- •IV. Функция и соседние категории (число как суждение, умозаключение, доказатеЛbСтво и выражение)
- •§ 75. |Суждение и определение].
- •§ 76. Понятие функции[111].
- •§ 77. Функционал и алгоритм (уравнение).
- •§ 78. Общность полученных категорий.
- •V. Переход к специаЛbНой теории числа
- •§ 79. Перевод математики на язык логики.
- •§ 80. Общая схема.
- •§ 82. Терминологические замечания.
- •§ 86. А) Безграничное конкретное множество; b) равенство (неравенство).
- •§ 87. С) Порядковость.
- •§ 88. Резюме и дедукция натурального ряда.
- •§ 89. Диалектическая формула натурального ряда.
- •§ 90. Переход к типам числа.
- •§ 92. B) Отрицательное число.
- •§ 93. С) Нуль.
- •§ 95. В) Дробное число.
- •§ 96. С) Бесконечность.
- •§ 97. Продолжение.
- •§ 98. Продолжение (о форме бесконечности).
- •§ 101. Постоянная, переменная, непрерывная и прерывная величина.
- •§ 102. Предел.
- •§ 103. Продолжение.
- •§ 104. Переход к мнимости.
- •§ 105. [С)] Мнимая (комплексная) величина. Общее понятие.
- •§ 106. Гауссовское представление.
- •§ 107· Некоторые детали.
- •О методе бесконечно-малых в логике предисловие
- •1. Вступление
- •2. ВеЩb — аргумент и отражение—функция
- •3. Изменения этих аргумента и функции и отношение между этими изменениями
- •4. Значение теории пределов для логики
- •5. Ленин о пределе, об общем и о законе
- •6. Примеры из наук
- •7. ДаЛbНейшие категории математического анализа и их применение в логике
- •8. Производная в логике
- •9. Преимущества инфинитезимаЛbНого учения о понятии в сравнении с традиционным формаЛbНо–логическим
- •10. Дифференциал в логике
- •11. Интеграл в логике
- •12. Производная, дифференциал и интеграл на фоне общего учения о числе
- •13. Три аспекта теории бесконечно–малых в применении к логике
- •14. Жизненно–логическое значение математического анализа
- •15. ИнфинитезимаЛbНо–логический словаРb
- •16. ЗаключитеЛbНые замечания
- •Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых
- •I. Логика исчисления бесконечно–малых как отражение социаЛbНой действитеЛbНости[219]
- •II. Исчисление бесконечно–малых и его основные категории
- •III. ДифференциаЛbНое и интеграЛbНое исчисление. Их логический состав
- •Математика и диалектика.
- •Метаматематика алексея лосева
- •§ 1. Недостающее звено
- •§ 2. «В траншеях ленинской диалектики»
- •§ 3. У последних «как» и «почему»
- •§ 4. Аксиоматика и метаматематика
- •§ 5. Диалектика как точная наука
- •§ 6. Вместо заключения
- •Примечания
§ 38. Неразличимость как принцип конкретной числовой индивидуальности.
Стоит всячески подчеркивать момент, который мы уже затронули бегло в предыдущем параграфе. Именно, аксиома перво–принципа обеспечивает нам понимание числа как своеобразной и ни на что другое не сводимой индивидуальности. Мы все время говорим, что неразличимость числа есть условие его различимости. Но сейчас эту мысль необходимо заострить в том направлении, что всякое различение есть ведь порождение одного в отличие от другого, что возможно только тогда, когда это «одно» имеет какое–то свое собственное свойство, которого нет ни в чем ином, ибо иначе одно и не отличалось бы ни от чего прочего. Следовательно, неразличимость есть принцип живой индивидуальности числа, принцип числа как существа, как живого организма, имеющего свой лик, свою физиономию, свою личность. Неразличимость есть диалектический принцип числа как самостоятельной личности. Число есть личность. И эта числовая личность, числовое существо и индивидуальность возможны только потому, что числу, этой абсолютной разделенности и расчлененности, всегда свойственно и абсолютное самотождество его составных моментов. Это, во–первых, касается всей числовой сферы вообще, ибо она в отличие от всего не–числового, от вещей, мыслей и пр., тоже имеет определенную живую индивидуальность. Это касается, во–вторых, и каждого числа в отдельности — в его отличии от прочих чисел, поскольку оно есть своя особенная личность, индивидуальность и как бы живое существо.
§ 39. Самосозидание.
Аксиома перво–принципа рисует неразличимое лоно всякого числа и его действий. Тут, однако, не просто неразличимость. Мало того, что в глубине числа мы находим этот первоисток всей его смысловой значимости, первоисток в пассивном, так сказать, смысле. Уже наше обыденное и наивное сознание ставит этот наивный, но весьма назойливый вопрос: откуда число, кто его автор, кто его сделал, чье это создание? Вопрос этот затрудняется тем, что всякий субъективистический ответ исключен для нас раз навсегда. Да и объективизм, как мы его видели раньше, не может быть в этом случае применим без всяких оговорок. Вдумываясь в природу любого числа, мы прекрасно видим, что к его собственному смысловому содержанию совершенно не относится то, что какой–нибудь Иван или Петр мыслительно его создал или осязал или что оно количественно определяет собою всю эту кучу орехов. Мы уже знаем (§ [23]), что число в этом смысле является само своим собственным автором, оно само себя и полагает, и утверждает, и определяет, и осмысленно продвигает вперед. К сущности числа, к его смысловому содержанию относится то, что оно не нуждается ни в чьих других актах мысли и бытия, но определяет само себя. Оно есть определенное числовое самосозидание.
Стихия этого самосозидания, однако, не определена ни одним из частичных моментов, входящих в его смысловой состав. Даже и целое, чем является число, не есть подлинный субъект числового самосозидания, ибо целость есть нечто сконструированное, нечто сложенное и потому сложное, т. е. она никак не есть нечто в подлинном смысле первоначальное. Первоначальным и единственным подлинным субъектом числа в смысле его самосозидания является именно формулируемый нами неразличимый числовой первоисток, без которого всякое число распалось бы так же, как и без своей раздельной структуры. Сама раздельная, координированно–раздель–ная структура в числе никак не может мыслиться в качестве актмв«0–смысловой. Всякая структура есть нечто уже полученное, изведенное, исшедшее, нечто в смысловом отношении пассивное. А число есть сила, акт, напряжение; оно властно и неумолимо врывается в небытие и определяет его, не терпя никакого сопротивления или исключения. Оно и внутри себя есть как бы самозамкнуто вращающаяся энергия, напряженная и бурлящая в своих собственных пределах. Число содержит в глубине своего организма некий тайный и внутренний пульс, извещающий нас при внимательном вслушивании о скрытом центре его смыслового кровообращения, удостоверяющий наличие в нем живого и вечного первоистока, манифестирующий таинственную числовую субъектность (и потому и субъективность) как вечно юное и без всякого изнурения и убыли радостно ликующее самосозидание. Структура числа и его счетное, количественное оформление были бы мертвы, если бы они не оживлялись этим неустанным потоком, льющимся из числовых первоглубин. Числовая структура есть скелет числа. Это то, на чем оно держится. Но скелет сам по себе мертв, сух, безобразен. В нем нет живого тела, живого пульса, нет животворной теплоты и дыхания, нет крови, нет сердца. В числе тоже есть свой скелет, эта вот счетная, всему свету известная количественная, раздельно–структурная форма, без которой нет числа, нет и счисления. Но это — внешнее число, мертвое число, вульгарное число. За ним и в его глубине бьется и трепещет неразличимая тайна числового перво–зачатия, теплое и нервное, беспокойное и вечно творящее лоно числа, самосозидающийся субъект числа, клокочущая и хаотическая туманность числовых солнечных систем, тайная и утробная всесильная мгла, рождающая бесконечные числовые оформления.
Это [т ] перво–принцип и есть носитель всех числовых судеб. Он порождает из себя всякую числовую мысль, всякое числовое бытие. Только тот, кто обладает этим перво–принципом, у кого в душе и в уме бьется этот внутренне–числовой импульс и первоисток, — только тот и есть подлинный математик, только тот и творит математическую науку, только тот и знает математические страсти ума, эти тайны математических зачатий, когда из глубин темных и бурлящих интуиций рождается светлый и солнечный мир математических оформлений. Только так и творили Лейбниц и Ньютон, Эйлер и Гаусс, только это и привело к божественной числовой симфонии Лагранжа, Лежандра, Коши, Римана, Вейерштрасса и Минковского. Число же как простую структуру и чистую схему знают только ремесленники и вычислители. А настоящие математики, как известно, весьма плохие вычислители.