
- •Кафедра психологии и педагогики
- •Тема 5. Механизмы возбуждения и торможения в цнс. Свойства нервных центров.
- •Учебный вопрос № 1 процесс возбуждения в цнс
- •Характеристика распространения возбуждения в цнс
- •Учебный вопрос № 2 свойства нервных центров
- •Учебный вопрос № 3 процесс торможения в цнс
- •Постсинаптическое торможение
- •Роль торможения
- •Заключение
Учебный вопрос № 3 процесс торможения в цнс
Торможение – это активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Торможение вторично относительно процесса возбуждения, так как всегда возникает как его следствие.
Торможение в ЦНС открыл И.М. Сеченов в 1863 г. В опыте на таламической лягушке он определял латентное время сгибательного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что латентное время рефлекса значительно увеличивается, если на зрительный бугор предварительно положить кристаллик поваренной соли. Открытие И. М. Сеченова послужило толчком для дальнейших исследований торможения в ЦНС. По месту возникновения различают пост- и пресинаптическое раздражение.
Постсинаптическое торможение
Постсинаптическое торможение открыл Дж. Экклс (1952) при регистрации потенциалов мотонейронов спинного мозга у кошки во время раздражения мышечных афферентов. При этом оказалось, что в мотонейронах мышцы - антагониста регистрируется не деполяризация, а гиперполяризационный постсинаптический потенциал, уменьшающий возбудимость мотонейрона, угнетающий его способность реагировать на возбуждающие влияния. По этой причине вызванный гиперполяризационный потенциал был назван тормозным постсинаптическим потенциалом – ТПСП (рис. 4). Амплитуда ТПСП 1-5 мВ, он способен суммироваться, более мощный афферентный залп вызывает возрастание амплитуды ТПСП.
Рис. 4. Возбуждающий (ВПСП) и тормозной (ТПСП)
постсинаптические потенциалы
Механизм постсинаптического торможения. ТПСП уменьшает возбудимость клетки, т.е. увеличивает пороговый потенциал (ДV), так как Екр (критический уровень деполяризации – КУД) остается на прежнем уровне, а мембранный потенциал (Е0) возрастает. ТПСП возникает под влиянием аминокислоты глицина, а также гамма-аминомасляной кислоты (ГАМК). В спинном мозге глицин выделяется особыми тормозными клетками (клетками Реншоу) в синапсах, образуемых этими клетками на мембране нейрона-мишени. Действуя на ионотропный рецептор постсинаптической мембраны, глицин увеличивает ее проницаемость для С1-, при этом С1- поступает в клетку согласно концентрационному градиенту и вопреки электрическому градиенту, в результате чего развивается гиперполяризация. В среде, обедненной хлором, тормозная роль глицина не реализуется. Ареактивность нейрона к возбуждающим импульсам является следствием алгебраической сум-мации ТПСП и ВПСП, в связи с чем в зоне аксонного холмика не происходит выведения, мембранный потенциал не достигает критического уровня. При действии ГАМК на постсинаптическую мембрану ТПСП развивается в результате входа С1- в клетку или выхода К+ из клетки.
Концентрационные градиенты ионов К+ в процессе развития торможения нейронов поддерживаются №+/К+-помпой, ионов С1- - С1--помпой.
Разновидности постсинаптического торможения. Обычно выделяют возвратное, латеральное, параллельное и прямое (реципроктное) постсинаптическое торможение. Имеются и другие варианты классификаций. Некоторые авторы называют только два вида торможения: возвратное и прямое (трактуется по-разному). В реальности вариантов торможения больше: они определяются множеством связей различных нейронов, в частности их коллатералей.
Возвратное постсинаптическое торможение – это такое торможение, когда тормозные вставочные нейрону действуют на те же нервные клетки, которые их активируют. В этом случае развивающееся торможение бывает тем глубже, чем сильнее было предшествующее возбуждение. Типичным примером возвратного постсинаптического торможения является торможение в мотонейронах спинного мозга. Как следует из рис. 5, (2), мотонейроны посылают коллатерали к тормозным вставочным нейронам, аксоны которых, в свою очередь, образуют синапсы на тех же мотонейронах, которые возбуждают тормозную клетку Реншоу. Такая тормозная цепь называется торможением Реншоу (в честь ученого, который ее открыл), а тормозные вставочные нейроны в этой цепи – клетками Реншоу. Это торможение обеспечивает, например, поочередное сокращение и расслабление скелетных мышц-сгибателей и разгибателей, что необходимо для координации движений конечностей при ходьбе. Сама клетка Реншоу возбуждается под влиянием ацетилхолина, воздействующего на Н-холинорецептор.
Рис. 5. Разновидности постсинаптического торможения:
2 — возвратное; 3 — латеральное; 4 — прямое;
н
ейроны:
О———<
возбуждающие, ———< тормозные
Подобную роль может выполнять и параллельное торможение, когда возбуждение блокирует само себя за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же возбуждением.
Латеральное постсинаптическое торможение графически представлено на рис. 5 (3). Тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение, называемое латеральным, так как образующаяся зона торможения находится «сбоку» по отношению к возбужденному нейрону и инициируется им. Латеральное торможение играет особенно важную роль в афферентных системах: оно может образовать тормозную зону, которая окружает возбуждающие нейроны.
Примером прямого торможения может служить реципрокное торможение, вызывающее угнетение центра-антагониста. Например, при раздражении кожных рецепторов возникает защитный сгибательный рефлекс: центр сгибания возбужден, а центр разгибания заторможен. В этом случае возбуждающие импульсы поступают к центру мышцы-сгибателя, а через тормозную клетку Реншоу – к центру мышцы-антагониста, т.е. разгибателю, что предотвращает ее сокращение (рис. 5, (4). Если бы возбуждались одновременно центры мышц-сгибателей и мышц-разгибателей, сгибание конечности в суставе было бы невозможным.
Пресинаптическое торможение первоначально было выявлено также в спинном мозге в опыте с регистрацией активности мотонейронов моносинаптической рефлекторной дуги при раздражении антагонистических мышечных нервов (Фрэнк, Фоуртес). Так, известно, что раздражение первичных афферентов мышечных веретен сопровождается возбуждением б-мотонейронов этой же мышцы. Однако опережающее раздражение афферентов сухожильных рецепторов мышц-антагонистов предотвращает возбуждение активируемых б-мотонейронов. Интересно, что мембранный потенциал и возбудимость исследуемых б-мотонейронов не изменялись либо регистрировался низкоамплитудный ВПСП, недостаточный для возникновения ПД. Поскольку в опыте исследовались мотонейроны в составе моносинаптической рефлекторной дуги, было очевидно, что они не возбуждаются вследствие процессов, происходящих в пресинаптическом окончании, что определяет название этого вида торможения.
Механизм пресинаптического торможения. Электрофизиологическое изучение процессов на уровне пресинаптических окончаний в вышеописанном опыте показало, что здесь регистрируется выраженная и продолжительная деполяризация, которая ведет к развитию торможения. В очаге деполяризации нарушается процесс распространения возбуждения, следовательно, поступающие импульсы, не имея возможности пройти зону деполяризации в обычном количестве и с обычной амплитудой, не обеспечивают выделение медиатора в синаптическую щель в достаточном количестве, поскольку мало ионов Са2+ входит в нервное окончание – постсинаптический нейрон не возбуждается, его функциональное состояние, естественно, остается неизменным. Деполяризацию пресинаптической терминали вызывают специальные тормозные вставочные клетки, аксоны которых образуют синапсы на пресинаптических окончаниях аксона-мишени. Торможение (деполяризация) после одного афферентного залпа продолжается 300-400 мс, медиатором является ГАМК, которая действует на ГАМК1-рецепторы.
Деполяризация является следствием повышения проницаемости для Cl-, в результате чего он выходит из клетки. Этот факт свидетельствует о том, что в составе мембран пресинаптических терминален имеется хлорный насос, обеспечивающий транспорт Cl- внутрь клетки вопреки электрическому градиенту. Под действием ГАМК тормозных нейронов и последующего повышения проницаемости мембраны для Cl- ионы Cl- начинают выходить наружу согласно электрическому градиенту. Это приводит к деполяризации пресинаптических терминалей и ухудшению их способности проводить импульсы.
Полагают также, что деполяризация пресинаптических терминалей может возникнуть при накоплении К+ в межклеточной жидкости в результате повышенной активности нервных окончаний и соседних нервных клеток. В этом случае также ухудшается проводимость пресинаптических терминалей из-за устойчивого снижения мембранного потенциала в связи с уменьшением концентрационного градиента для К+.
Разновидности пресинаптического торможения также изучены недостаточно. По-видимому, имеются те же варианты, что и для постсинаптического торможения. В частности, на рис. 6 представлено параллельное и латеральное пресинаптическое торможение. Однако возвратное пресинаптическое торможение на уровне спинного мозга (по типу возвратного постсинаптического торможения) у млекопитающих обнаружить не удалось, хотя у лягушек оно выявлено.
В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, чем представлено на рис.6, однако все варианты пре- и постсинаптического торможения объединяют в две группы:
1) когда блокируется собственный путь самим распространяющимся возбуждением с помощью вставочных тормозных клеток (параллельное и возвратное торможение);
2) когда блокируются другие нервные элементы под влиянием импульсов к соседним возбуждающим нейронам с включением на пути тормозных клеток (латеральное и прямое торможение). Поскольку тормозные клетки сами могут быть заторможены другими тормозными нейронами (торможение торможения), это может облегчить распространение возбуждения.
Рис. 6. Разновидности пресинаптического торможения:
нейроны: 1 — параллельные, 2 — латеральные;
О ———< возбуждающие, ———< тормозные