Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник ОСНОВЫ ЭЛЕКТРОАКУСТИКИ ред.1.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
5.18 Mб
Скачать

1.4. Плоская волна.

Тип волны, распространяющийся в среде, зависит от того, каким образом возбуждается волна и от того, как и каким частицам передает свою энергию текущая частица.

Плоской волной называется волна с плоским фронтом. При этом лучи являются параллельными. Образуется поблизости от колеблющейся плоскости или если рассматривается небольшой участок волнового фронта точечного излучателя. Причем абсолютная площадь этого участка может быть тем больше, чем дальше мы находимся от излучателя. То, что излучатель считается точечным, также говорит о большом расстоянии до него. Кроме того, точечность излучателя говорит о том, что рассматривается только прямая волна. Лучи, охватывающие участок плоскости рассматриваемого волнового фронта, образуют "трубу". Амплитуда звукового давления в плоской волне не уменьшается при удалении от источника, т.к. не происходит растекания энергии за пределы стенок этой трубы. Если иметь ввиду практически реальные случаи, то это соответствует остронаправленному излучению, например, излучению электростатических панелей большой площади, рупорных излучателей.

Фронт плоской волны представляет собой плоскость. Согласно определению фронта волны звуковые лучи пересекают его под прямым углом, поэтому в плоской волне они параллельны между собой. Так как поток энергии при этом не расходится, интенсивность звука не должна была бы уменьшаться с удалением от ис­точника звука. Тем не менее она уменьшается из-за молекулярного затухания, вязкости среды, запыленно­сти ее, рассеяния и т. п. потерь. Однако эти потери так малы, что с ними можно не считаться при распростра­нении волны на небольшие расстояния. Поэтому обыч­но полагают, что интенсивность звука в плоской волне не зависит от расстояния до источника звука.

Акустическое сопротивление для пло­ской волны определяется только скоростью звука и плотностью среды и является активным, вследствие че­го давление и скорость колебаний находятся в одина­ковой фазе.

1.5. Сферическая волна .

Волна, фронт которой представляет собой сферу, называется сферической. Лучи при этом совпадают с радиусами сферы.

Сферическая волна формируется в следующих случаях.

1. Размеры источника много меньше длины волны и расстояние до источника позволяет считать его точкой. Такой источник называется точечным.

2. Источник представляет собой пульсирующую сферу.

В обоих случаях предполагается, что переотражения волны отсутствуют, т.е. рассматривается только прямая волна. Чисто сферических волн в сфере интересов электроакустики не бывает, это такая же абстракция, как и плоская волна. В области средневысоких частот конфигурация и размеры источников не позволяют считать их ни точкой, ни сферой. А в области низких частот непосредственное влияние начинает оказывать как минимум пол. Единственная близкая к сферической волна формируется в заглушенной камере при малых габаритах излучателя. Но рассмотрение этой абстракции позволяет уяснить некоторые важные моменты распространения звуковых волн. На больших расстояниях от излучателя сферическая волна вырождается в плоскую. Фронт такой волны представляет собой сферическую поверхность, а звуковые лучи согласно определению фронта волны совпадают с радиусами сферы (рис. 1.4). В результате расхождения волн интенсивность звука убывает с удалением от источника. Так как потери энергии в среде малы, как и в случае плоской волны, то при распространении волны на небольшие расстоя­ния с ними можно не считаться. Поэтому средний по­ток энергии через сферическую поверхность с радиу­сом rа (рис. 1.4) будет тот же самый, что и через лю­бую другую сферическую поверхность с большим радиусом rb , если в промежутке между ними нет источ­ника или поглотителя энергии. Следовательно, мощ­ность звуковой волны

где Iа и Ib — интенсивность звука для радиусов rа и rb.

Акустическое сопротивление в сферической волне по модулю никогда не превышает сопротивления в плоской волне, чем боль­ше отношение длины волны к ее радиусу (т. е. рас­стоянию от центра источника звука), тем ближе сдвиг фаз к 90°; с уменьшением этого отношения сдвиг фаз стремится к нулю, т. е. сферическая волна прибли­жается к плоской. Например, для частоты 100 Гц (дли­на волны λ=340/100=3,4 м) при расстоянии от цент­ра источника звука 0,25 м сдвиг фаз получается рав­ным 65°, а для частоты 5000 Гц (λ=6,8 см) при рас­стоянии 1 м сдвиг фаз получается около 0,5°.