
- •Рекомендовано к печати Ученым советом Луганского государственного института культуры и искусств (протокол № от 2011)
- •Глава 1. Звуковое поле в неограниченном пространстве.
- •Классификация звуковых волн по направлению колебаний частиц
- •1.2. Линейные характеристики.
- •Приравнивая обе силы получаем
- •1.4. Плоская волна.
- •1.5. Сферическая волна .
- •1.6. Цилиндрическая волна.
- •Глава 2 . Основные свойства слуха
- •2.2. Восприятие по частоте
- •2.3. Порог слышимости.
- •2.5. Уровни.
- •2.6. Громкость и уровень громкости звука.
- •2.7. Эффект маскировки.
- •2.8. Громкость сложных звуков.
- •2.9. Временные характеристики слухового восприятия.
- •2.10 Нелинейные свойства слуха.
- •2.11. Бинауральный эффект.
- •Глава 3. Акустические сигналы
- •3.1. Определения
- •3.2. Динамический диапазон.
- •3.3 Средний уровень.
- •3.4. Частотный диапазон и спектры.
- •3.5. Временные характеристики акустического сигнала.
- •3.6. Первичный речевой сигнал.
- •3.7. Вторичный сигнал.
- •3.8. Шумы и помехи
- •3.9. Линейные искажения.
- •3.10. Нелинейные искажения.
- •3.11. Переходные искажения
- •3.12. Допустимые величины искажений
- •Глава 4. Мозговые волны.
- •4.1. Основные понятия.
- •4.2.Функции мозговых волн .
- •4.3. Характеристики генерируемых бинарных колебаний.
- •Глава 5. Микрофоны.
- •5.1. Определения.
- •5.2. Акустические характеристики микрофонов.
- •5.3. Динамические (катушечные) микрофоны.
- •5.4. Ленточные микрофоны
- •5.5. Конденсаторные и электретные микрофоны.
- •5.6. Пьезомикрофоны
- •5.7. Электромагнитные микрофоны
- •5.8. Угольные микрофоны
- •5.9. Ларингофоны
- •Глава 6. Громкоговорители и телефоны .
- •6.1. Определения
- •6.2. Диффузорные излучатели
- •6.3. Диффузорные динамические громкоговорители.
- •6.4. Групповые излучатели и громкоговорители,
- •6.5. Рупорные излучатели.
- •6.6. Рупорные электродинамические громкоговорители.
- •6.7. Электростатические громкоговорители.
- •6.8. Громкоговорящие акустические системы.
- •6.9. Пневматический громкоговоритель.
- •Глава 7. Акустика помещений
- •7. 1. Распространение звука в ограниченном пространстве.
- •7.3. Характеристики помещения.
- •7.4. Звукопоглощающие материалы и конструкции
- •7.5. Звукоизоляция помещений.
- •Глава 8. Студии звукового и телевизионного вещания .
- •8.1. Типы студий.
- •8.2. Звукоизоляция студий
- •8.4. Электроакустическое оборудование студии и комнат прослушивания
- •Глава 9. Озвучение и звукоусиление .
- •9.1. Основные показатели систем озвучения.
- •9.2. Особенности озвучения открытых пространств.
- •9.3. Сосредоточенные системы озвучения.
- •9.4. Зональные системы.
- •9.5. Особенности озвучения помещений.
- •9.6. Сосредоточенные системы для помещений.
- •9.7. Распределенные системы .
- •9.8. Звукоусиление.
- •Глава 10. Понятность и разборчивость речи .
- •10.1. Введение.
- •10.2. Формантный метод определения разборчивости речи.
- •Речевые сзо.
- •Трансляционные музыкально-речевые сзо.
- •Концертные музыкально-речевые сзо.
- •10.3. Методы повышения разборчивости речи.
- •Глава 11. Акустические измерения.
- •Звукомерные камеры.
- •11.2. Оборудование для электроакустических измерений
- •11.3. Измерение акустических параметров.
- •11.4. Измерения воздушной и ударной звукоизоляции.
- •11.5. Использование программного обеспечения.
1.4. Плоская волна.
Тип волны, распространяющийся в среде, зависит от того, каким образом возбуждается волна и от того, как и каким частицам передает свою энергию текущая частица.
Плоской волной называется волна с плоским фронтом. При этом лучи являются параллельными. Образуется поблизости от колеблющейся плоскости или если рассматривается небольшой участок волнового фронта точечного излучателя. Причем абсолютная площадь этого участка может быть тем больше, чем дальше мы находимся от излучателя. То, что излучатель считается точечным, также говорит о большом расстоянии до него. Кроме того, точечность излучателя говорит о том, что рассматривается только прямая волна. Лучи, охватывающие участок плоскости рассматриваемого волнового фронта, образуют "трубу". Амплитуда звукового давления в плоской волне не уменьшается при удалении от источника, т.к. не происходит растекания энергии за пределы стенок этой трубы. Если иметь ввиду практически реальные случаи, то это соответствует остронаправленному излучению, например, излучению электростатических панелей большой площади, рупорных излучателей.
Фронт плоской волны представляет собой плоскость. Согласно определению фронта волны звуковые лучи пересекают его под прямым углом, поэтому в плоской волне они параллельны между собой. Так как поток энергии при этом не расходится, интенсивность звука не должна была бы уменьшаться с удалением от источника звука. Тем не менее она уменьшается из-за молекулярного затухания, вязкости среды, запыленности ее, рассеяния и т. п. потерь. Однако эти потери так малы, что с ними можно не считаться при распространении волны на небольшие расстояния. Поэтому обычно полагают, что интенсивность звука в плоской волне не зависит от расстояния до источника звука.
Акустическое сопротивление для плоской волны определяется только скоростью звука и плотностью среды и является активным, вследствие чего давление и скорость колебаний находятся в одинаковой фазе.
1.5. Сферическая волна .
Волна, фронт которой представляет собой сферу, называется сферической. Лучи при этом совпадают с радиусами сферы.
Сферическая волна формируется в следующих случаях.
1. Размеры источника много меньше длины волны и расстояние до источника позволяет считать его точкой. Такой источник называется точечным.
2. Источник представляет собой пульсирующую сферу.
В обоих случаях предполагается, что переотражения волны отсутствуют, т.е. рассматривается только прямая волна. Чисто сферических волн в сфере интересов электроакустики не бывает, это такая же абстракция, как и плоская волна. В области средневысоких частот конфигурация и размеры источников не позволяют считать их ни точкой, ни сферой. А в области низких частот непосредственное влияние начинает оказывать как минимум пол. Единственная близкая к сферической волна формируется в заглушенной камере при малых габаритах излучателя. Но рассмотрение этой абстракции позволяет уяснить некоторые важные моменты распространения звуковых волн. На больших расстояниях от излучателя сферическая волна вырождается в плоскую. Фронт такой волны представляет собой сферическую поверхность, а звуковые лучи согласно определению фронта волны совпадают с радиусами сферы (рис. 1.4). В результате расхождения волн интенсивность звука убывает с удалением от источника. Так как потери энергии в среде малы, как и в случае плоской волны, то при распространении волны на небольшие расстояния с ними можно не считаться. Поэтому средний поток энергии через сферическую поверхность с радиусом rа (рис. 1.4) будет тот же самый, что и через любую другую сферическую поверхность с большим радиусом rb , если в промежутке между ними нет источника или поглотителя энергии. Следовательно, мощность звуковой волны
где Iа и Ib — интенсивность звука для радиусов rа и rb.
Акустическое сопротивление в сферической волне по модулю никогда не превышает сопротивления в плоской волне, чем больше отношение длины волны к ее радиусу (т. е. расстоянию от центра источника звука), тем ближе сдвиг фаз к 90°; с уменьшением этого отношения сдвиг фаз стремится к нулю, т. е. сферическая волна приближается к плоской. Например, для частоты 100 Гц (длина волны λ=340/100=3,4 м) при расстоянии от центра источника звука 0,25 м сдвиг фаз получается равным 65°, а для частоты 5000 Гц (λ=6,8 см) при расстоянии 1 м сдвиг фаз получается около 0,5°.