
- •Рекомендовано к печати Ученым советом Луганского государственного института культуры и искусств (протокол № от 2011)
- •Глава 1. Звуковое поле в неограниченном пространстве.
- •Классификация звуковых волн по направлению колебаний частиц
- •1.2. Линейные характеристики.
- •Приравнивая обе силы получаем
- •1.4. Плоская волна.
- •1.5. Сферическая волна .
- •1.6. Цилиндрическая волна.
- •Глава 2 . Основные свойства слуха
- •2.2. Восприятие по частоте
- •2.3. Порог слышимости.
- •2.5. Уровни.
- •2.6. Громкость и уровень громкости звука.
- •2.7. Эффект маскировки.
- •2.8. Громкость сложных звуков.
- •2.9. Временные характеристики слухового восприятия.
- •2.10 Нелинейные свойства слуха.
- •2.11. Бинауральный эффект.
- •Глава 3. Акустические сигналы
- •3.1. Определения
- •3.2. Динамический диапазон.
- •3.3 Средний уровень.
- •3.4. Частотный диапазон и спектры.
- •3.5. Временные характеристики акустического сигнала.
- •3.6. Первичный речевой сигнал.
- •3.7. Вторичный сигнал.
- •3.8. Шумы и помехи
- •3.9. Линейные искажения.
- •3.10. Нелинейные искажения.
- •3.11. Переходные искажения
- •3.12. Допустимые величины искажений
- •Глава 4. Мозговые волны.
- •4.1. Основные понятия.
- •4.2.Функции мозговых волн .
- •4.3. Характеристики генерируемых бинарных колебаний.
- •Глава 5. Микрофоны.
- •5.1. Определения.
- •5.2. Акустические характеристики микрофонов.
- •5.3. Динамические (катушечные) микрофоны.
- •5.4. Ленточные микрофоны
- •5.5. Конденсаторные и электретные микрофоны.
- •5.6. Пьезомикрофоны
- •5.7. Электромагнитные микрофоны
- •5.8. Угольные микрофоны
- •5.9. Ларингофоны
- •Глава 6. Громкоговорители и телефоны .
- •6.1. Определения
- •6.2. Диффузорные излучатели
- •6.3. Диффузорные динамические громкоговорители.
- •6.4. Групповые излучатели и громкоговорители,
- •6.5. Рупорные излучатели.
- •6.6. Рупорные электродинамические громкоговорители.
- •6.7. Электростатические громкоговорители.
- •6.8. Громкоговорящие акустические системы.
- •6.9. Пневматический громкоговоритель.
- •Глава 7. Акустика помещений
- •7. 1. Распространение звука в ограниченном пространстве.
- •7.3. Характеристики помещения.
- •7.4. Звукопоглощающие материалы и конструкции
- •7.5. Звукоизоляция помещений.
- •Глава 8. Студии звукового и телевизионного вещания .
- •8.1. Типы студий.
- •8.2. Звукоизоляция студий
- •8.4. Электроакустическое оборудование студии и комнат прослушивания
- •Глава 9. Озвучение и звукоусиление .
- •9.1. Основные показатели систем озвучения.
- •9.2. Особенности озвучения открытых пространств.
- •9.3. Сосредоточенные системы озвучения.
- •9.4. Зональные системы.
- •9.5. Особенности озвучения помещений.
- •9.6. Сосредоточенные системы для помещений.
- •9.7. Распределенные системы .
- •9.8. Звукоусиление.
- •Глава 10. Понятность и разборчивость речи .
- •10.1. Введение.
- •10.2. Формантный метод определения разборчивости речи.
- •Речевые сзо.
- •Трансляционные музыкально-речевые сзо.
- •Концертные музыкально-речевые сзо.
- •10.3. Методы повышения разборчивости речи.
- •Глава 11. Акустические измерения.
- •Звукомерные камеры.
- •11.2. Оборудование для электроакустических измерений
- •11.3. Измерение акустических параметров.
- •11.4. Измерения воздушной и ударной звукоизоляции.
- •11.5. Использование программного обеспечения.
5.4. Ленточные микрофоны
Приемники градиента давления. Принцип действия ленточного микрофона — симметричного приемника градиента давления—заключается в том, что под действием разности звуковых давлений гибкая ленточка 1,
(рис. 5.12) колеблется в магнитном поле, силовые линии которого идут вскользь по ширине ленточки. Вследствие этого в ленточке индуктируется ЭДС Е = Blv, где В— индукция поля у ленточки, в плоскости ленточки; l — длина ленточки; v — скорость ее колебаний.
Магнитное поле создается подковообразным магнитом 3. Полюсные наконечники 2 образуют щель 4, в которой размещена ленточка. В полюсных наконечниках сделан ряд отверстий (окон) 5 для того, чтобы уменьшить разность хода звуковых волн, действующих на ленточку с обеих ее сторон, и в то же время избежать насыщения магнитной цепи. Расстояние между отверстиями вместе с ленточкой (2а) не превышает 1,7 см, т. е. не превышает длины волны, соответствующей частоте 20 кГц. Это обеспечивает свободное огибание звуковых волн во всем диапазоне передаваемых частот и линейность акустической чувствительности микрофона в диапазоне до 15 кГц [см. рис. (5.4)].
Ленточка, укрепленная на изоляционных планках 6, имеет длину от 5 до 10 см. Индукция в зазоре не превышает 1,0 Тс, поэтому ЭДС, развиваемая ленточкой, составляет несколько микровольт. Для повышения напряжения микрофон снабжен трансформатором с большим коэффициентом трансформации (равным 50 и больше). Заметим, что сопротивление ленточки мало и даже при таком коэффициенте трансформации внутреннее сопротивление микрофона Ri получается не выше 200— 250 Ом. Вследствие малости сопротивления ленточки трансформатор располагают как можно ближе к ней, чтобы сопротивление соединительных проводов было значительно меньше сопротивления ленточки.
Для повышения чувствительности микрофона необходимо увеличить площадь ленточки и индукцию в щели, уменьшать массу ленточки. Эти условия противоречивы. При заданной резонансной частоте ленточки (ее обычно берут около 30 Гц) необходимо увеличивать гибкость ленточки. Это делают путем ее гофрирования и возможного уменьшения ее толщины (до двух микрон). Ленточка является самым уязвимым местом этого микрофона: от сильного дуновения (например, от ветра) она рвется. Поэтому ленточный микрофон используют только в помещении.
Стандартный уровень чувствительности ленточного микрофона такой же, как и у динамического (—57 дБ), частотный диапазон лежит в пределах 50—16 000 Гц и имеет неравномерность частотной характеристики не более 8 дБ (наиболее равномерна она в диапазоне ниже 5 кГц).
Характеристика направленности его — косинусоидальная («восьмерка», см. рис. 5.6б, кривая 5) и не зависит от частоты. В этом преимущество ленточного микрофона градиента давления.
Во втором варианте микрофона (рис. 5.12б) камера закрывает всю ленточку, но в корпуса камеры сделано отверстие 8 для прохода звуковых волн к задней стороне ленточки.
Для того чтобы ленточка 1 не испытывала сопротивления со стороны объема камеры 7, находящегося за ней, необходимо создать условия полного поглощения звуковых колебаний, передаваемых ленточкой этому объему. Для этой цели объем соединяют с так называемым лабиринтом, представляющим собой длинную трубку, например, в виде спирали или зигзагообразной формы, заполненную поглощающим материалом . Получается асимметричный приемник градиента давления, характеристика направленности которого имеет форму кардиоиды.
Применяется и сдвоенный микрофон градиента давления , т. е. приемник градиента давления второго порядка (он называется биградиентным). Этот микрофон имеет более острую характеристику направленности, но более суженный частотный диапазон (100—10 000 Гц).
Комбинированные приемники. Существует ленточный микрофон и в виде комбинации приемника давления и приемника градиента давления (рис. 5.13). Часть ленточки с тыльной стороны защищена от действия звуковых волн камерой с лабиринтом. Таким образом получается, что одна часть ленточки 2 находится под действием разности давлений волн, приходящих с фронтальной и тыльной сторон, а другая часть 1 — только под действием волн, приходящих с фронтальной стороны. Напряжения от обеих частей ленточки складываются арифметически. Характеристика направленности такого микрофона будет иметь форму кардиоиды, если ленточка разделена пополам. Если же у приемника давления длина ленточки будет меньше, чем у приемника градиента давления, то можно получить суперкардиоидную или гиперкардиоидную характеристику направленности. Соответствующий этому случаю микрофон имеет ограниченный снизу частотный диапазон (70—15 000 Гц) и повышенную неравномерность частотной характеристики (10 дБ). Его используют в помещениях как для передачи музыки, так и для передачи речи.
Кроме таких микрофонов, выпускаются комбинированные, состоящие из катушечного микрофона-приемника давления и ленточного микрофона-приемника градиента давления, располагаемых один над другим. Можно включать оба микрофона или один из них и получать три вида характеристики направленности.