
- •Рекомендовано к печати Ученым советом Луганского государственного института культуры и искусств (протокол № от 2011)
- •Глава 1. Звуковое поле в неограниченном пространстве.
- •Классификация звуковых волн по направлению колебаний частиц
- •1.2. Линейные характеристики.
- •Приравнивая обе силы получаем
- •1.4. Плоская волна.
- •1.5. Сферическая волна .
- •1.6. Цилиндрическая волна.
- •Глава 2 . Основные свойства слуха
- •2.2. Восприятие по частоте
- •2.3. Порог слышимости.
- •2.5. Уровни.
- •2.6. Громкость и уровень громкости звука.
- •2.7. Эффект маскировки.
- •2.8. Громкость сложных звуков.
- •2.9. Временные характеристики слухового восприятия.
- •2.10 Нелинейные свойства слуха.
- •2.11. Бинауральный эффект.
- •Глава 3. Акустические сигналы
- •3.1. Определения
- •3.2. Динамический диапазон.
- •3.3 Средний уровень.
- •3.4. Частотный диапазон и спектры.
- •3.5. Временные характеристики акустического сигнала.
- •3.6. Первичный речевой сигнал.
- •3.7. Вторичный сигнал.
- •3.8. Шумы и помехи
- •3.9. Линейные искажения.
- •3.10. Нелинейные искажения.
- •3.11. Переходные искажения
- •3.12. Допустимые величины искажений
- •Глава 4. Мозговые волны.
- •4.1. Основные понятия.
- •4.2.Функции мозговых волн .
- •4.3. Характеристики генерируемых бинарных колебаний.
- •Глава 5. Микрофоны.
- •5.1. Определения.
- •5.2. Акустические характеристики микрофонов.
- •5.3. Динамические (катушечные) микрофоны.
- •5.4. Ленточные микрофоны
- •5.5. Конденсаторные и электретные микрофоны.
- •5.6. Пьезомикрофоны
- •5.7. Электромагнитные микрофоны
- •5.8. Угольные микрофоны
- •5.9. Ларингофоны
- •Глава 6. Громкоговорители и телефоны .
- •6.1. Определения
- •6.2. Диффузорные излучатели
- •6.3. Диффузорные динамические громкоговорители.
- •6.4. Групповые излучатели и громкоговорители,
- •6.5. Рупорные излучатели.
- •6.6. Рупорные электродинамические громкоговорители.
- •6.7. Электростатические громкоговорители.
- •6.8. Громкоговорящие акустические системы.
- •6.9. Пневматический громкоговоритель.
- •Глава 7. Акустика помещений
- •7. 1. Распространение звука в ограниченном пространстве.
- •7.3. Характеристики помещения.
- •7.4. Звукопоглощающие материалы и конструкции
- •7.5. Звукоизоляция помещений.
- •Глава 8. Студии звукового и телевизионного вещания .
- •8.1. Типы студий.
- •8.2. Звукоизоляция студий
- •8.4. Электроакустическое оборудование студии и комнат прослушивания
- •Глава 9. Озвучение и звукоусиление .
- •9.1. Основные показатели систем озвучения.
- •9.2. Особенности озвучения открытых пространств.
- •9.3. Сосредоточенные системы озвучения.
- •9.4. Зональные системы.
- •9.5. Особенности озвучения помещений.
- •9.6. Сосредоточенные системы для помещений.
- •9.7. Распределенные системы .
- •9.8. Звукоусиление.
- •Глава 10. Понятность и разборчивость речи .
- •10.1. Введение.
- •10.2. Формантный метод определения разборчивости речи.
- •Речевые сзо.
- •Трансляционные музыкально-речевые сзо.
- •Концертные музыкально-речевые сзо.
- •10.3. Методы повышения разборчивости речи.
- •Глава 11. Акустические измерения.
- •Звукомерные камеры.
- •11.2. Оборудование для электроакустических измерений
- •11.3. Измерение акустических параметров.
- •11.4. Измерения воздушной и ударной звукоизоляции.
- •11.5. Использование программного обеспечения.
3.3 Средний уровень.
Средний уровень акустического сигнала может быть определен как средний статистический по интенсивности для длительных интервалов времени, или как средний, измеряемый прибором, имеющим небольшую постоянную времени (объективное среднее), либо по слуховому ощущению (субъективное среднее). Для определения среднего уровня вторичного сигнала необходимо определять средний уровень по ощущению, а для первичных – знать все средние уровни, т.к. сигналы приходят к человеку через аппаратуру систем вещания и связи.
Средний уровень интенсивности акустического сигнала можно определять или по слуховому ощущению (субъективное среднее), или как средний статистический по интенсивности для длительных интервалов времени (среднее длительное), или как средний, измеряемый прибором, имеющим небольшую постоянную времени (объективное среднее). Для вторичных сигналов достаточно определять только средний уровень по ощущению, для первичных — необходимо знать все средние уровни, так как эти сигналы проходят к человеку через аппаратуру систем связи и вещания.
Эти средние уровни сигнала можно измерить, изменяя постоянную времени прибора. Учитывая, что мгновенная мощность сигнала изменяется от нуля до амплитудного значения, минимальная постоянная времени прибора для измерения объективного среднего уровня не должна быть меньше максимального полупериода колебаний. Так как постоянная времени слуха в среднем равна 150 мс, то для измерения среднего уровня по слуховому ощущению постоянная времени должна быть около 150 мс. Разность между квазимаксимальным и усредненным уровнем (за длительный промежуток времени, например, 15 с для речи и 1 мин для музыки) называют пик-фактором:
Пик-фактор показывает, насколько ниже надо взять усредненный уровень передачи по сравнению с максимально допускаемым уровнем в канале, чтобы не перегружать канал. Для музыкальных сигналов пик-фактор доходит до 20 дБ и более, для речевого сигнала — не превышает 12 дБ. Эти данные пик-фактора относятся к сигналам, не прошедшим любую обработку, в том числе и в виде воздействия акустических свойств помещения.
Полагают, что приемник звука, а также орган слуха человека воспринимают звук, как приборы с элементарной цепочкой типа RC.
3.4. Частотный диапазон и спектры.
Акустический сигнал имеет изменяющиеся форму и состав спектра. Спектры разделяются на сплошные, дискретные, низко- и высокочастотные. Каждому источнику звука присущи свои особенности состава спектра, которые делают индивидуальную окраску звука. Эту окраску называют темрбом. Тембр (от фр. - timbre) означает "качество тона", "окраску тона" (tone quality). Для оценки тембра звучания важен не только момент его распознавания (т.е. способность отличить один инструмент от другого), но и возможность оценить изменение тембра в процессе исполнения. Здесь важнейшую роль играет динамика изменения спектральной огибающей во времени на всех этапах звучания: атаки, стационарной части, спада. Существуют понятия тембра скрипки, тромбона, органа и т. и., а также тембра голоса: звонкий, когда подчеркнуты высокочастотные составляющие; глухой, когда они подавлены. В первую очередь представляют интерес средний спектр для источников звука каждого типа, а для оценки искажений сигнала — спектр, усредненный за длительный интервал времени (15 с для информационных сигналов и 1 мин для художественных). Усредненный спектр может быть, как правило, сплошной и достаточно сглаженный по форме.
Сплошные спектры характеризуются зависимостью спектральной плотности от частоты (эту зависимость называют энергетическим спектром). Спектральной плотностью называется интенсивность звука в полосе частот шириной, равной единице частоты. Для акустики эту полосу берут равной 1 Гц.
Частотный диапазон акустического сигнала определяют из частотной зависимости спектральных уровней. Это определение можно сделать или по спаду спектральных уровней или приближенно, на слух. Субъективными границами считают заметность ограничения диапазона для 75% слушателей. Приведем частотные диапазоны для ряда первичных источников акустического сигнала, Гц:
речь.................................................... 70—7000
скрипка.........................................250—15 000
треугольник................................1000—16 000
бас-труба............................................. 50—6000
орган-...................................................20—15 000
симфонический оркестр ………… 30—15000
Если спектры имеют плавный спад в ту или иную сторону, то их еще оценивают тенденцией, т. е. средним наклоном спектральных уровней в сторону низких или высоких частот. Например, речевой спектр имеет тенденцию, равную — 6 дБ/окт (спад в сторону высоких частот).
К акустическим сигналам также относятся и акустические шумы. Различают три типа шумов: розовый, белый и речевой. Речевые шумы создаются при одновременном разговоре нескольких человек. “Белые” шумы имеют одинаковую спектральную плотность во всем частотном диапазоне. “Розовые” шумы имеют тенденцию спада плотности на 3 дБ/окт в сторону высоких частот.
- Спектр розового цвета получается, если сила света убывает по гиперболическому закону в сторону фиолетового цвета. Аналогично ему введено понятие «розового» шума Характер поведения каждого обертона во времени также несет важнейшую информацию о тембре. Например, в звучании колоколов особенно четко видна динамика изменения, как по составу спектра, так и по характеру изменения во времени амплитуд его отдельных обертонов: если в первый момент после удара в спектре отчетливо видно несколько десятков спектральных составляющих, что создает шумовой характер тембра, то через несколько секунд в спектре остаются несколько основных обертонов (основной тон, октава, дуодецима и минорная терция через две октавы), остальные затухают, и это создает особый тонально окрашенный тембр звучания.
Иногда спектр представляют в виде дискретного набора обертонов с разными амплитудами. Спектры могут быть представлены в виде спектрограмм, где по вертикальной оси отложена частота, по горизонтальной - время, а амплитуда представлена интенсивностью цвета.
Сплошные спектры характеризуются зависимостью спектральной плотности от частоты (эту зависимость называют энергетическим спектром). Спектральной плотностью называют интенсивность звука в полосе частот шириной, равной единице частоты. Спектральный состав речи в значительной степени зависит от пола, возраста и индивидуальных особенностей говорящего. Для различных людей отклонение уровней сигналов, измеренных в октавных полосах, от типовых уровней может составлять ± 6 дБ.