
- •§7 Решение задач линейного программирования 58
- •Предисловие
- •§ 1. Численное интегрирование
- •1. Постановка задачи.
- •2. Метод прямоугольников.
- •Задача 1.
- •Задача 2
- •Задача 3
- •3. Метод трапеций.
- •4. Метод Симпсона.
- •5. Практическая работа на эвм
- •§ 2. Решение систем линейных уравнений
- •1. О системах линейных уравнений.
- •2. Решение систем линейных уравнений с двумя неизвестными по формулам Крамера.
- •Пример 1.
- •3. Решение систем линейных уравнений с тремя неизвестными по методу Крамера.
- •4. Решение систем линейных уравнений способом Гаусса.
- •5. Практическая работа на эвм
- •2. Интерполяционный многочлен Лагранжа
- •Пример 2.
- •З Рис 3.1 адача 1.
- •Алгоритм:
- •Задача 2.
- •3. Вычисление приближенного значения функции с помощью электронных таблиц
- •Пример 3
- •Задача 3
- •§ 4. Простейшие задачи статистики
- •1. Вычисление средних.
- •2. Математическое ожидание, дисперсия, среднее квадратичное отклонение, точность оценки математического ожидания, показатель достоверности вычисления математического ожидания
- •3. Практическая работа на эвм
- •§ 5. Численные методы решения трансцендентных уравнений
- •1. Введение
- •Пример 1.
- •Теорема
- •2. Метод половинного деления
- •Алгоритм отделения корней
- •Алгоритм уточнения корней
- •3. Практическая работа на эвм.
- •4. Лабораторная работа
- •Ход работы
- •§6 Численные методы решения дифференциальных уравнений
- •1. О некоторых задачах приводящих к дифференциальным уравнениям Задача 1
- •Задача 2
- •Задача 3
- •2. Несколько определений
- •Пример 1
- •Пример 2
- •Задачи для самостоятельного решения.
- •3. Постановка задачи численного решения дифференциального уравнения
- •4. Метод Эйлера.
- •Пример 1
- •Пример 2
- •5. Метод Рунге-Кутта второго порядка (Метод Эйлера-Коши)
- •6. Метод Рунге-Кутта 4 порядка
- •7. Лабораторная работа. Численное решение обыкновенного дифференциального уравнения первого порядка
- •§7 Решение задач линейного программирования
- •1. Введение
- •2. Основные методы решения задач оптимизации
- •Общий случай задачи оптимизации
- •Задачи оптимизации, алгоритмы которых могут быть реализованы с помощью электронных таблиц
- •Основные этапы работ при решении задачи оптимизации
- •4. Задачи линейного программирования. Методы решения задач.
- •Пример.
- •Основные положения симплекс-метода
- •5. Решение задач линейного программирования с помощью ms Excel Пример 1
- •Решение:
- •Решение задачи
- •Пример 2
- •Решение:
- •6. Практическая работа 1
- •7. Транспортная задача Введение
- •Решение
- •Решение:
- •Составление математической модели
- •Решение задачи
- •8. Практическая работа 2
- •Приложения Приложение 1. Численное интегрирование. Варианты самостоятельных работ
- •Приложение 2. Численное интерполирование. Варианты самостоятельных работ
- •Приложение 3. Численное дифференцирование. Варианты лабораторных работ
- •Приложение 4. Задачи оптимизации. Варианты самостоятельных работ
- •Приложение 5. Транспортная задача. Варианты самостоятельных работ
- •Литература.
Пример 2
Найти частное решение уравнения , удовлетворяющее начальному условию у(1)=2
Решение:
Общее решение: у=Сх. Полагая у0=2, х0=1 получим 2=С1 и С=2
Частное решение: у=2х
Задачи для самостоятельного решения.
Доказать, что функция f является решением указанного дифференциального уравнения.
Найти С по начальному условию у(0)=1
Определение. Задача нахождения частного решения дифференциального уравнения, удовлетворяющего заданному начальному условию, называется задачей Коши.
Из всех разделов математического анализа, дифференциальные уравнения являются одним из самых важных по своим приложениям, ибо решая дифференциальное уравнение, т.е. находя некоторую функцию, мы устанавливаем закон, по которому происходит то или иное явление или процесс.
3. Постановка задачи численного решения дифференциального уравнения
Определение. Решить задачу Коши для уравнения y'=f(x,y) (6.1) – это значит найти решение уравнения y'=f(x,y) в виде функции у(х), удовлетворяющей начальному условию у(х0)=у0
Геометрически это означает, что требуется найти интегральную кривую у=у(х), проходящую через заданную точку M0(x0,y0) при выполнении равенства (6.1).
В классическом анализе разработано немало приемов нахождения решений дифференциальных уравнений через элементарные функции. Между тем весьма часто при решении практических задач эти методы оказываются либо совсем беспомощными, либо их решение связывается с недопустимыми затратами усилий и времени.
Например дифференциальное уравнение у'=у2+х2 не имеет аналитического решения.
По этой причине для решения задач практически созданы методы приближенного решения дифференциальных уравнений.
Чаще всего при численном решении дифференциальных уравнений получают решение в виде таблицы, либо строится график искомой функции (что почти равносильно).
4. Метод Эйлера.
В основе метода Эйлера лежит идея графического построения решения дифференциального уравнения. Однако этот метод дает одновременно и способ нахождения искомой функции в табличной форме.
Пусть дано дифференциальное уравнение (6.1). Найти приближенное численное решение этого дифференциального уравнения, т.е. составить таблицу приближенных значений функции у=у(х) удовлетворяющей заданным начальным условиям.
x |
x0 |
x1 |
x2 |
x3 |
x4 |
x5 |
… |
xn |
y |
y0 |
y1 |
y2 |
y3 |
y4 |
y5 |
… |
yn |
Где,
xi=x0+ih,
– шаг таблицы.
Приближенно можно считать, что правая часть в (6.1) остается постоянной на каждом из отрезков между точками деления. Метод Эйлера состоит в непосредственной замене производной разностными отношениями по приближенной формуле:
y-y0=f(x0,y0)(x-x0)
y=y0+f(x0,y0)(x-x0)
если x=x1, то
y1=y0+f(x0,y0)(x1-x0)
y1=y0+hf(x0,y0)
y0=hf(x0,y0)
если x=x2, то
y2=y1+f(x1,y1)(x2-x1)
y2=y1+hf(x1,y1)
y1=hf(x1,y1)
…
если x=xi+1, то
yi+1=yi+hf(xi,yi)
yi=hf(xi,yi)
Таким образом, получение таблицы значений искомой функции у(х) по методу Эйлера заключается в циклическом применении пары формул:
yk=hf(xk,yk)
yk+1=yk+yk
где k=0, 1, 2, … ,n
Г
еометрически
эти формулы означают, что на отрезке
[xi,
xi+1]
интегральная кривая заменяется отрезком
касательной к кривой (см. рис. 6.3, рис.
6.4).