- •Министерство образования и науки Украины
- •Содержание
- •Лекция 1 Общие сведения о проектировании
- •Цели создания сапр
- •Сапр, используемые в мире сегодня
- •Cпециализированные сапр
- •Универсальные сапр
- •Малые и средние
- •Полномасштабные системы
- •Состав сапр
- •Общесистемные принципы сапр
- •Стадии создания сапр
- •Виды обеспечения сапр
- •Лекция 2 Применение cad, сам и cae в разработке и производстве продукта
- •Использование систем cad/сам/ cae в рамках жизненного цикла продукта
- •1.1 Шкаф с полками
- •Лекция 3 Компоненты сапр
- •Аппаратное обеспечение
- •Представление графической информации в эвм
- •Растровые графические устройства
- •Векторные графические устройства
- •Как отличить векторную графику от растровой
- •Фрактальная графика
- •Трёхмерная графика
- •Лекция 4 Основные виды информации в сапр
- •Автоматизированные информационные системы сапр
- •Лекция 5 методы расчета напряженного состояния конструкций, применяемые в сапр Методы сопротивления материалов и строительной механики
- •Численные методы расчета напряженного состояния конструкции
- •Выбор методики
- •Классификация расчетов
- •Лекция 6 Расчет напряженно-деформированного состояния конструкции методом конечных элементов в программном комплексе.
- •Введение в метод конечных элементов Терминология, обозначения, определения
- •Этапы практической реализации мкэ
- •Лекция 7 Системы автоматизированной разработки чертежей
- •Настройка параметров чертежа
- •Единицы измерения
- •Размеры чертежа
- •Сетка и привязка
- •Функции черчения Прямая линия
- •Окружность
- •Удаление
- •Скругление и снятие фасок
- •Штриховка
- •Простановка размеров
- •Копирование
- •Критерии развития технических объектов
- •Функциональные критерии развития
- •Технологические критерии развития
- •Экономические критерии развития
- •Антропологические критерии развития
- •Оптимизация технических решений
- •Концепция принятия решений
- •Ранжирование
- •Выбор эффективных решений
- •Определение единственного решения
- •Лекция 9 Системы геометрического моделирования
- •Системы каркасного моделирования
- •Системы поверхностного моделирования
- •Системы твердотельного моделирования
- •Параметрическое моделирование
- •Лекция 10 Системы моделирования устройств
- •Базовые функции моделирования агрегатов
- •Просмотр агрегата
- •Возможности совместного проектирования
- •Использование моделей агрегатов
- •Упрощение агрегатов
- •Лекция 11 Числовое программное управление
- •Аппаратная конфигурация станка с чпу
- •Типы систем чпу
- •Системы координат
- •Синтаксис программы обработки
- •Составление программ вручную
- •Автоматизированное составление программ
- •Лекция 12 Быстрое прототипирование и изготовление
- •Процессы быстрого прототипирования и изготовления Стереолитография
- •Отверждение на твердом основании
- •Избирательное лазерное спекание
- •Трехмерная печать
- •Ламинирование
- •Моделирование методом наплавления
- •Применение быстрого прототипирования и изготовления
- •Прототипы для оценки проекта
- •Прототипы для функциональной оценки
- •Лекция 13 Виртуальная инженерия
- •Компоненты виртуальной инженерии
- •Виртуальное проектирование
- •Цифровая имитация
- •Виртуальное прототипирование
- •Виртуальный завод
- •Оценка возможности производства
- •Оценка и контроль качества
- •Оценка и оптимизация производственного процесса
- •Коллективная разработка
- •Аппаратура
- •Примеры промышленного применения виртуальной инженерии
- •Программные продукты
- •Список литературы
Отверждение на твердом основании
В процессе отверждения на твердом основании каждый слои отверждается путем экспонирования ультрафиолетовой лампой, а не сканирования лазерным лучом. Таким образом, все точки слоя затвердевают одновременно и окончательное отверждение не требуется.
Типичный процесс отверждения на твердом основании происходит так:
По данным геометрической модели детали и желаемой толщине слоя рассчитывается поперечное сечение каждого слоя.
Для каждого слоя изготавливается оптическая маска по форме соответствующего поперечного сечения.
После выравнивания, платформа покрывается тонким слоем жидкого фотополимера.
4. Над поверхностью жидкой пластмассы помещается маска, соответствующая жидкому слою, и пластмасса экспонируется светом мощной ультрафиолетовой лампы. Процесс начинается с маски, соответствующей нижнему слою.
5. Оставшаяся жидкость удаляется с изделия.
6. Изделие покрывается слоем жидкого воска, который заполняет пустоты. Затем к воску прикладывается ходолная пластина, и он затвердевает.
7. Слой стачивается до желаемой толщины с помощью шлифовального диска.
Готовая часть изделия покрывается тонким слоем жидкого полимера, и шаги 4-7 повторяются для каждого последующего слоя, пока не будет обработан самый верхний слой.
Воск расплавляется и удаляется из готовой детали.
Главным преимуществом отверждения на твердом основании по сравнению со стереолитографией является отсутствие необходимости в поддерживающих структурах. Это обусловлено тем, что пустоты заполняются воском. Кроме того, благодаря использованию света лампы вместо лазерного луча исключается операция окончательного отверждения. Хотя отверждение на твердом основании позволяет изготавливать детали с большей точностью, чем стереолитография, процесс этот весьма сложен.
Избирательное лазерное спекание
Процесс изготовления детали путем избирательного лазерного спекания протекает следующим образом.
1. Цилиндрическая заготовка помещается па высоте, необходимой для того, чтобы на нее можно было осадить слой порошкового материала желаемой толщины. Порошковый материал, используемый для изготовления прототипа, поступает из подающего цилиндра и наносится выравнивающим валиком.
2. Слой порошка избирательно сканируется и нагревается лучом лазера, вследствие чего частицы слипаются между собой. Просканированные частицы порошка образуют требуемое поперечное сечение. Обратите внимание, что этот процесс начинается с нижнего поперечного сечения детали.
3 Цилиндрическая заготовка опускается на толщину одного слоя для нанесения нового слоя порошка.
Луч лазера сканирует новый слой порошка, склеивая его с предыдущим и формируя следующее поперечное сечение.
Шаги 3 и 4 повторяются, пока не будет создан самый верхний слой детали.
6.Для некоторых материалов может понадобиться окончательное отверждение. Поддерживающая структура не требуется, потому что пустоты каждого слоя заполняются необработанным порошком. Более того, в качестве материала для процесса избирательного спекания потенциально может использоваться любой плавкий порошок, даже металлический, если лазер обладает достаточной мощностью.
