- •Министерство образования и науки Украины
- •Содержание
- •Лекция 1 Общие сведения о проектировании
- •Цели создания сапр
- •Сапр, используемые в мире сегодня
- •Cпециализированные сапр
- •Универсальные сапр
- •Малые и средние
- •Полномасштабные системы
- •Состав сапр
- •Общесистемные принципы сапр
- •Стадии создания сапр
- •Виды обеспечения сапр
- •Лекция 2 Применение cad, сам и cae в разработке и производстве продукта
- •Использование систем cad/сам/ cae в рамках жизненного цикла продукта
- •1.1 Шкаф с полками
- •Лекция 3 Компоненты сапр
- •Аппаратное обеспечение
- •Представление графической информации в эвм
- •Растровые графические устройства
- •Векторные графические устройства
- •Как отличить векторную графику от растровой
- •Фрактальная графика
- •Трёхмерная графика
- •Лекция 4 Основные виды информации в сапр
- •Автоматизированные информационные системы сапр
- •Лекция 5 методы расчета напряженного состояния конструкций, применяемые в сапр Методы сопротивления материалов и строительной механики
- •Численные методы расчета напряженного состояния конструкции
- •Выбор методики
- •Классификация расчетов
- •Лекция 6 Расчет напряженно-деформированного состояния конструкции методом конечных элементов в программном комплексе.
- •Введение в метод конечных элементов Терминология, обозначения, определения
- •Этапы практической реализации мкэ
- •Лекция 7 Системы автоматизированной разработки чертежей
- •Настройка параметров чертежа
- •Единицы измерения
- •Размеры чертежа
- •Сетка и привязка
- •Функции черчения Прямая линия
- •Окружность
- •Удаление
- •Скругление и снятие фасок
- •Штриховка
- •Простановка размеров
- •Копирование
- •Критерии развития технических объектов
- •Функциональные критерии развития
- •Технологические критерии развития
- •Экономические критерии развития
- •Антропологические критерии развития
- •Оптимизация технических решений
- •Концепция принятия решений
- •Ранжирование
- •Выбор эффективных решений
- •Определение единственного решения
- •Лекция 9 Системы геометрического моделирования
- •Системы каркасного моделирования
- •Системы поверхностного моделирования
- •Системы твердотельного моделирования
- •Параметрическое моделирование
- •Лекция 10 Системы моделирования устройств
- •Базовые функции моделирования агрегатов
- •Просмотр агрегата
- •Возможности совместного проектирования
- •Использование моделей агрегатов
- •Упрощение агрегатов
- •Лекция 11 Числовое программное управление
- •Аппаратная конфигурация станка с чпу
- •Типы систем чпу
- •Системы координат
- •Синтаксис программы обработки
- •Составление программ вручную
- •Автоматизированное составление программ
- •Лекция 12 Быстрое прототипирование и изготовление
- •Процессы быстрого прототипирования и изготовления Стереолитография
- •Отверждение на твердом основании
- •Избирательное лазерное спекание
- •Трехмерная печать
- •Ламинирование
- •Моделирование методом наплавления
- •Применение быстрого прототипирования и изготовления
- •Прототипы для оценки проекта
- •Прототипы для функциональной оценки
- •Лекция 13 Виртуальная инженерия
- •Компоненты виртуальной инженерии
- •Виртуальное проектирование
- •Цифровая имитация
- •Виртуальное прототипирование
- •Виртуальный завод
- •Оценка возможности производства
- •Оценка и контроль качества
- •Оценка и оптимизация производственного процесса
- •Коллективная разработка
- •Аппаратура
- •Примеры промышленного применения виртуальной инженерии
- •Программные продукты
- •Список литературы
Типы систем чпу
Контроллеры ЧПУ делятся на две основные категории: системы позиционного регулирования и устройства контурного управления.
Контроллер СПР используется в том случае, когда траектория движения инструмента относительно детали не имеет значения, например, если инструмент не касается детали при перемещении от одной точки к другой. Чаще всего такая ситуация имеет место при сверлении, пробивании, нарезке резьбы и установке компонентов на печатной плате. Позиционное регулирование реализуется достаточно просто, а потому станок с таким контроллером стоит недорого. Он может выполнять и простые фрезеровальные операции, если снабдить его механизмом контроля скорости подачи при перемещении от одной точки к другой. Такой станок можно использовать для фрезерования пазов.
Устройство контурного управления используется в тех случаях, когда важна траектория движения инструмента относительно детали: на фрезеровальных и токарных станках, газовых резаках, сварочных установках и шлифовальных станках. В таких устройствах требуется одновременное управление по двум и более осям, причем скорость по каждой оси может задаваться независимо. Таким образом, контроллер ЧПУ может обеспечивать, например, движение по окружности при задании центра, радиуса и конечных точек дуги.
Системы координат
Относительное перемещение инструмента и заготовки осуществляется посредством направляющих станка. Три основные оси перемещения называются осями х, у и z и образуют правую систему координат. Положительные направления осей обычно определяются производителем станка. По общему соглашению положительное направление оси z соответствует удалению инструмента от заготовки.
Ось z. На станках, подобных токарному, где деталь вращается во время ее обработки, ось z направляется параллельно шпинделю, а движение вдоль этой оси в положительном направлении удаляет инструмент от заготовки. Если же вращается не деталь, а инструмент, как на фрезеровальном, сверлильном и расточном станках, ось z выбирается параллельной оси инструмента. Как и у станков с вращающейся заготовкой, движение вдоль оси z в положительном направлении удаляет инструмент от заготовки. В прочих станках, к которым относятся прессы, строгальный и стригальный станки, ось z направляется перпендикулярно набору инструментов.
Ось х. В станках с вращающейся деталью за ось х принимается направление перемещения инструмента (резца), а движение вдоль этой оси в положительном направлении удаляет инструмент от заготовки. На вертикальных фрезеровальном и сверлильном станках положительное направление оси х соответствует направлению правой руки оператора, стоящего лицом к станку. На горизонтальном фрезеровальном станке ось х направляется параллельно столу.
Ось у. Направление оси у выбирается исходя из направлений осей х и z в соответствии с правилом правой руки. (z – средний вверх, большой палец – х, указательный – у. Вращение против часовой стрелки от х к у).
По общему соглашению станки классифицируются в соответствии с количеством координат, необходимых для задания положения и ориентации резца. Например, фрезеровальный станок может иметь 2, 3 или 5 осей в соответствии с тем, сколько координат могут одновременно задаваться контроллером. Другими словами, если контроллер может одновременно перемещать резец лишь по двум осям, станок называется двухосевым, или имеющим две степени свободы. В этом случае инструмент может независимо перемещаться вдоль третьей оси. Если у станка имеется три степени свободы, инструмент может перемещаться по произвольной кривой в трехмерном пространстве, но не может изменять ориентацию. Если же требуется изменение ориентации резца одновременно с перемещением его в пространстве, станок должен иметь большее количество степеней свободы. В продаже встречаются станки, имеющие до девяти степеней свободы.
