
- •Раздел 1 современная электрическая связь.
- •1.1. Основные термины и определения
- •1.2. Направляющие системы передачи.
- •Раздел 2
- •2.1. Классификация и конструктивные элементы электрических кабелей
- •2. 2. Маркировка электрических кабелей связи.
- •2.3. Классификация и конструкция волоконно-оптических
- •2.4. Маркировка оптических кaбелей.
- •Раздел 3
- •3.1. Уравнения Максвелла
- •3.2. Теорема Умова-Пойнтинга.
- •3.3. Расчёт параметров передачи двухпроводных направляющих систем.
- •3.4. Основные уравнения передачи по двухпроводным направляющим системам.
- •3.5. Вторичные параметры напpавляющих систем
- •3.6. Физические процессы при пеpедаче импульсных сигналов.
- •3.7. Переходные и импульсные характеристики кабельных цепей.
- •3.8. Искажения прямоугольного импульса при передаче по кабельным цепям
- •Раздел 4
- •4.1. Основные сведения o волс
- •4.2. Типовая схема системы волоконно-оптической связи, основные компоненты волс.
- •4.3. Типы световодов
- •4.4. Критическая частота и длина волны волоконного световода
- •4.5. Единицы измерения оптической мощности
- •4.6. Затyхание сигнала в волоконных световодах
- •4.7. Окна прозрачности
- •Раздел 5
- •Раздел 6
- •6.3 Технология симметрирования высокочастотных кабелей связи
- •6.4. Концентрированное симметрирование при помощи контуров противосвязн
- •6.5. Экранирование кабелей связи
- •6.7. Защита оптических трактов от взаимных помех
- •Раздел 7
- •7.1. Источники опасных и мешающих влияний
- •7.2. Расчет опасных магнитных влиянин
- •7.3. Расчет мешающих влиянии
- •7.4. Меры защиты на линиях связи
- •7.5. Защита волс от внешних электромагнитных влияний
- •7.6. Коррозия подземных кабелей связи
- •Раздел 8
- •8.1. Организация работ по стронтельству линейных сооружений электросвязи.
- •8.2. Строительство телефонной кабельной канализации
- •8.3. Прокладка кабеля в канализации
- •8.5. Монтаж электрических кабелей связи
- •8.6. Монтаж оптических кабелей
- •8.7. Устройство вводов кабелей связи
- •8.8. Строительство междугородных линий связи
- •Раздел 9
- •9.1. Методы эксплуатации линейных сооружений
- •9.2. Содержание кабелей гтс под избыточным воздушным
- •9.3. Электрнческие измерения линии гтс
- •9.4. Измерения при строительстве волс
- •9.5. Централизация и автоматизация технической эксплуатации
- •Раздел 10
- •10.1. Общие положения
- •10.2. Основные этапы проектирования
Раздел 6
МЕРЫ ЗАЩИТЫ ОТ ВЗАИМНЫХ ВЛИЯНИЙ НА ЛИНИЯХ СВЯЗИ
6.1. Симметрирование кабeлей связи
Симметрирование - это комплекс мероприятий и электрических измерений, проводимых в процессе строительства и монтажа кабельных линий связи. На ГТС симметрируют в основном кабели межстанционных соединительных линий, большой протяженности. На практике используют следующие основные методы симметрирования: метод скрещивания, конденсаторный метод и метод концентрированного включения контуров противосвязи.
Симметрирование скрещиванием основано на компенсации электромагнитных связей одного отрезка кабеля связями другого отрезка путем скрещивания жил цепей.
Конденсаторное симметрирование основано на компенсации электpических связей путем включения конденсаторов междy жилами взаимовлияющих цепей.
Симметрирование включением контурoв противосвязи основано на компенсации электромагнитных связей путем включения между жилами взаимовлияющих цепей контуров противосвязи, содержащих резисторы и конденсаторы.
Конденсаторное симметрирование компенсирует только электрические связи, поэтому оно применяется в основном для низкочастотных кабелей, в которых эти связи являются определяющими. Симметрирование скрещиванием применяется как для низкочастотных, так и для высокочастотных кабелей. Концентрированное
симметрирование контурами противосвязи в основном применяется для ВЧ кабелей.
Отличительная особенность симметрирования НЧ и ВЧ кабелей заключается в следующем. Рабочее затухание кабeля в области низких частот весьма мало, поэтому симметрирование НЧ кабелей по результатам измерения защищенности на дальнем конце может изменять влияние на ближнем конце, и наоборот. Поэтому НЧ кабели симметрируют на длине шага симметрирования (расстояние между смежными точками симметрирования). Длина шага симметрирования 1,2...1,7 км. На высоких частотах рабочее затухание велико, поэтому симметрирование по результатам измерения взаимных влияний на дальнем конце не изменяет влияния на ближнем концe. Это позволяет выполнять симметрирование ВЧ кабелeй на длине элементарного кабельного участка (ЭКУ).
Взаимные влияния между цепями внутри четверок существенно больше, чем между цепями разных четверок, поэтому наиболее сложным и трудоемким является симметрирование внутричетверочных комбинаций цепей. Между электрическими (емкостными) и магнитными (индуктивными) связями имеет место достаточно тесная корреляция. Для кабелей c однороднoй изоляцией жил справедливо соотношение m=kZв2, поэтому компенсацию электромагнитных связей методом скрещивания можно рассматривать, оперируя только одной связью. C физической точки зрения удобно рассматривать емкостные связи между цепями четверки и емкостные асимметрии цепей четверки относительно заземленной обoлочки (рис. 6.1), величина котoрых характеризует степень взаимных влияний как в низкoчастотных, так и в высокочастотных кабелях связи.
По одной четверке можно организовать в диапазоне низких частот три цепи: две основные и одну фантомную (искусственную).
Согласно рис. 6.2, первая основная цепь образована жилами 1 и 2, вторая основная цепь - жилами 3 и 4, а фантомная цепь образована c помощью четырех линейных трансформаторов со средними точками.
При подключенном к средним точкaм генераторе по полуобмоткам трансформатoров протекают равные, но противоположно направленные токи. Поэтому их магнитные потоки компенсируют друг друга и ток в станционной обмотке равен нулю. Аналогичное явление наблюдается и на противоположном конце линии при подключении к средним точкам нагрузки.
При этом прямым проводом фaнтомной цепи является первая основная цепь, a обратным проводом - вторaя основная цепь. Таким образом, по указанным целям организуются три независимые связи.
Согласно рис. 6.1, можно записать приближенные выражения для коэффициентов емкостной связи и емкостной асимметрии (без учета влияния соседних четверок):
6.2. Симметрирование
скрещиванием
При прямом соединении жил в кабеле электромагнитные связи складываются, a при скрещивании - вычитаются. B кабелях связи конструктивные неоднородности носят случайный характер, поэтому и электромагнитные связи по длине распределены по случайному закону. Это вызывает необходимость подбора схем скрещивания жил кабеля для каждого конкретного случая.
Поскольку вариантов соединения жил кабеля два, a цепей три, то существует 23=8 способов соедикения жил в четверке. Схема соединения жил записывается в видe оператора скрещивания. Первый знак оператора относится к первой основной цепи, второй - ко второй, а третий - к фантомной. Соединение жил напрямую обозначается (•), a со скрещиванием (Х). Операторы скрещивания и соответствующие им схемы соединения жил в четверке приведены в табл. 6.1.
На ГТС НЧ кабели связи имеют обычно небольшую протяженность и по параметрам взаимного влияния, как правило, удовлетворяют установленным нормам и симметрированию не подвергаются. Поэтому подбор оптимaльных операторов скрещивания проводится при симметрировании высокочастотных кабелей.