
- •1. Определите понятие поля. Приведите примеры из окружающего мира.
- •2. Доступная нам природа условно разделяется на следующие уровни: назовите и кратко поясните.
- •3. Определите понятие поверхностей уровня или изоповерхностей. Что определяет величина, которая называется градиентом?
- •4. В настоящее время в микромире выделяется четыре уровня вещества: назовите и кратко поясните.
- •5. Поясните понятия векторное поле и векторная функция. Приведите примеры.
- •6. Материальные системы нано-, микро-, макро- и мегамира различаются между собой … чем? Приведите примеры.
- •7. Определите понятия: силовое поле, силовая линия, картина силовых линий. Приведите примеры из окружающего мира.
- •8. Приведите и поясните графическое изображение модели атома, где электроны движутся в классическом смысле.
- •9. Чем и как определяются электрические свойства тел? Что означает понятие: электростатическое электрическое поле?
- •10. Кратко поясните суть концепции атомизма.
- •11. Поясните как определяется сила взаимодействия двух точечных зарядов и . Назовите структурные уровни организации материи.
- •12. В современном понимании электрон имеет двойственную природу: поясните.
- •13. Что такое напряженность электрического поля ? Как она определена? Электрическое смещение или электрическая индукция – Что это?
- •14. В первом приближении, согласно квантовой теории, состояние электрона, как пространственной волны в атоме, можно представить … как? Поясните.
- •15. Линией напряженности электрического поля называется …… ? Где и как они существуют и что характеризуют?
- •16. Поясните понятие орбитали.
- •17. Что называют исток, а что называют стоком. Что, где и когда они характеризуют? Приведите примеры.
- •18. Дискретность и непрерывность материи: поясните.
- •19. Что называют дивергенцией векторного поля ? Что она характеризует?
- •20. В чем заключается универсальность корпускулярно-волновой концепции? Корпускулярно-волновой дуализм – поясните понятие.
- •21. Мощность источника определяется …. . Чем и как?
- •22. Охарактеризуйте структурные уровни организации материи.
- •23. Электрическое поле называется потенциальным, если ….. Поясните
- •24. Поясните понятия: колебания и волны. Чем они отличаются?
- •25. Электрическим потенциалом данной точки поля называется … . Поясните.В ряде технических наук, в частности в электротехнике и электронике, нулевым потенциалом считают …. . Что?
- •26. Поясните понятия: дискретность и непрерывность. Приведите примеры.
- •27. Напряженность электрического поля – величина векторная или скалярная? Потенциал – величина векторная или скалярная?
- •28. Назовите и поясните основные агрегатные состояния вещества.
- •29. Изобразите и кратко опишите, какие типичные фрагменты структуры электрического поля имеются в картине силовых линий точечного положительного заряда (является ли везде поле однородным)?
- •30. Колебания в природе. Поясните. Приведите примеры.
- •31. Что означают термины – потенциальная яма и потенциальный барьер?
- •32. Виды колебаний в природе, их возможная классификация, основные параметры.
- •33. Как может быть создано магнитное поле?
- •34. Волны. Волновое описание процессов. Поясните.
- •35. Определите понятие силовых магнитных линий. Как они себя ведут? Существуют ли в природе магнитные заряды? Как они себя ведут в природе? Имеет ли вектор источники или стоки? Какие и почему?
- •36. В чем заключается универсальность корпускулярно-волновой концепции? Корпускулярно-волновой дуализм – поясните понятие.
- •37. Какие поля называют соленоидальными? Чем они создаются?
- •38. В современном понимании электрон имеет двойственную природу: поясните.
- •39. Элементарным источником принято считать … . Что? Элементарным вихрем принято считать … . Что? Вихри могут быть … . Какими? Вихревое поле является потенциальным или не потенциальным?
- •40. Что означают термины – потенциальная яма и потенциальный барьер? Где используют взаимодействие заряженных частиц с электрическим полем?
- •41. Мерой мощности полного вихря (заключенного в контуре) принято считать величину … . Какую? Что такое ротация соленоидального поля, что она определяет и что является мерой ротации?
- •42. Гармоническая волна. Поясните.
- •43. Электромагнит, соленоид – поясните что это и для чего (где) применяется.
- •44. Эффект Доплера: Поясните суть и его применения.
- •45. Электромагнитное реле – поясните что это и для чего (где) применяется.
- •46. Строение вещества в разных агрегатных состояниях. Поясните.
- •47. Ламинарное и турбулентное движение жидкости (газа) – поясните.
- •48. Охарактеризуйте структурные уровни организации материи.
- •49. Установившимся стационарным движением жидкости называется...Что? Поясните.
- •50. Рефракция и интерференция волн. Явление дифракции волн. Поясните.
- •51. Напорным называется движение жидкости…. Свободной струей называется …. Поясните.
- •52. Эффект Доплера: Поясните суть и его применения.
- •53. Электромагнит, соленоид – поясните что это и для чего (где) применяется.Электромагнитное реле – поясните что это и для чего (где) применяется.
- •54. Явление резонанса. Поясните суть и его применения.
- •55. Структура микромира. Поясните понятие – элементарная частица.
- •56. На какие уровни условно делится природа? Поясните.
- •57. Строение вещества в разных агрегатных состояниях. Поясните.
- •58. Охарактеризуйте структурные уровни организации материи.
- •59. Что означают термины – потенциальная яма и потенциальный барьер?
- •60. Как может быть создано магнитное поле?
- •61. Напряженность электрического поля – величина векторная или скалярная? Потенциал – величина векторная или скалярная? Определите понятие потенциальной диаграммы и эквипотенциальных поверхностей.
- •62. Колебания и волны в природе: их основные сходства и различия, описание.
- •63. Доступная нам природа условно разделяется на следующие уровни: назовите и кратко поясните.
- •64. Определите понятие поля. Приведите примеры из окружающего мира.
- •65. Колебания в природе. Поясните. Приведите примеры.
- •66. В настоящее время в микромире выделяется четыре уровня вещества: назовите и кратко поясните.
58. Охарактеризуйте структурные уровни организации материи.
Микромир — область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, пространственная размерность которых исчисляется в диапазоне от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 с. Сюда относятся поля, элементарные частицы, ядра, атомы и молекулы. Макромир — мир материальных объектов, соизмеримых по своим масштабам с человеком и его физическими параметрами. На этом уровне пространственные величины выражаются в миллиметрах, сантиметрах, метрах и километрах, а время — в секундах, минутах, часах, днях и годах. В практической действительности макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком и продуктами его деятельности, т.е. макротелами. Мегамир — сфера огромных космических масштабов и скоростей, расстояние в которой измеряется астрономическими единицами, световыми годами и парсеками, а время существования космических объектов — миллионами и миллиардами лет. К этому уровню материи относятся наиболее крупные материальные объекты: звезды, галактики и их скопления.
59. Что означают термины – потенциальная яма и потенциальный барьер?
Где используют взаимодействие заряженных частиц с электрическим полем?
Потенциальная яма – некоеуглубление, распределенное вдоль одной Пока единичный положительный заряд находится вблизи системы линейно расположенных зарядов на него действуют силы, возвращающие его АО внутреннюю область. Если заряженная отрицательно пылинка, находящаяся в «яме», попытается «выбраться наружу», то силы будут отталкивать ее внутрь. Если полная энергия такой частицы меньше энергии, достаточной для того, чтобы «подняться из ямы» то положительно заряженная частица, даже обладающая начальной скоростью «вылета» остановится и повернет обратно в яму. То есть она не сможет выйти и потенциальной ямы. Выйти из ямы может лишь та частица, которая обладает достаточно большой энергией (имела достаточно высокую начальную скорость).
Потенциальный барьер - некое возвышение, распределенное вдоль одной координаты. Его и называют барьером. Согласно наших обычных представлений, можно говорить о том, что всякая положительно заряженная частица, подходя к барьеру со стороны его широкой части сможет преодолеть его, если ей удастся «перепрыгнуть» через него. Если полная энергия такой частицы меньше энергии гребня потенциального барьера, то, если судить по расположению стрелок, характеризующих действие силы на пробный единичный положительный заряд, положительно заряженная частица остановится и повернет обратно. То есть она не сможет пройти сквозь барьер. Преодолеть барьер («перепрыгнуть» его) может лишь та частица, которая обладает достаточно большой энергией (движется выше гребня барьера).
Взаимодействие заряженных частиц с электрическим полем используют:
1. В электрогазоочистке, для выделения из газового (воздушного) потока твердых тел или жидких частиц.
Например, в электрофильтрах на пылинки запыленного газа предварительно за счет ионизации «наносят» отрицательный заряд. Во время движения в электростатическом поле вблизи положительно заряженного электрода отрицательно заряженные пылинки движутся к положительному электроду и оседают на нем. Осадительный электрод периодически встряхивается и осевшая пыль ссыпается в бункер, а затем удаляется.
2. Для электросепарации – разделения многокомпонентных частиц на составные части.
Например, в зерноочистительных машинах семена заряжаются и ориентируются вдоль силовых линий поля. Имея различную массу, семена при перемещении в электростатическом поле отклоняются (отрываются) в разных местах и «направляются» по различным ячейкам приемного бункера, поскольку степень перемещения их зависит от вида семян и их электрофизических свойств. Это позволяет из одной и той же партии семян выделить фракции с однородными качественными показателями.
3. Для электроокраски – нанесения твердых и жидких покрытий (красок) на изделия.
Например, в установках электростатической окраски вдуваемые пневматическим распылителем частицы краски заряжаются и превратившись в отрицательные ионы, движутся к положительно заряженным изделиям. Заряженные частицы попадают на изделие со всех сторон и равномерно плотным слоем краски окрашивают всю его поверхность.