
- •Министретсво образования и науки рф казанский государственный архитектурно-строительный университет
- •Оглавление
- •Введение
- •I. Общие закономерности химических процессов
- •Энергетика химических процессов и химическое средство
- •Химическая кинетика и равновесие в гомогенных системах
- •Гетерогенные дисперсные системы
- •III. Электрохимия
- •Электрохимические процессы
- •Коррозия и защита металлов
- •IV. Специальные вопросы химии для инженеров-строителей
- •Химия воды
- •Щелочноземельные металлы и алюминий
- •Первый закон термодинамики. Энтальпия.
- •Контрольные вопросы
- •Энтропия
- •Контрольные вопросы
- •Энергия гиббса
- •Контрольные вопросы
- •Стандартные энтальпии образования ∆н0298, энтропии образования s0298 и энергии Гиббса образования ∆g0298 некоторых веществ
- •Химическая кинетика и равновесие
- •Контрольные вопросы
- •Способы выражения концентрации раствора
- •Контрольные вопросы
- •Свойства растворов температура кипения и замерзания растворов
- •Контрольные вопросы
- •Окислительно-восстановительные реакции
- •Контрольные вопросы
- •Электрохимия Электродные потенциалы и электродвижущие силы
- •Стандартные электродные потенциалы (е0) некоторых металлов (ряд напряжений)
- •Контрольные вопросы
- •Электролиз
- •Электролиз расплавов
- •Электролиз водных растворов
- •Законы электролиза
- •Контрольные вопросы
- •Коррозия металлов
- •PH среды и коррозия
- •Механизмы электрохимической коррозии
- •Биологическая коррозия
- •Контрольные вопросы
- •Жесткость воды
- •Контрольные вопросы
- •Неогранческие вяжущие вещества Контрольные вопросы
- •Варианты контрольных заданий
- •Приложение Стандартные термодинамические характеристики некоторых химических веществ
- •Константы и степени диссоциации некоторых слабых электролитов
- •Растворимость солей и оснований в воде Растворимость солей и оснваний в воде (р – растворимое, м – малорастворимое,
- •Или разлагается водой)
- •Список литературы
- •420043, Казань, Зеленая,1
Окислительно-восстановительные реакции
Окислительно-восстановительными называются реакции, сопровождающиеся изменением степени окисленности атомов, входящих в состав реагирующих веществ. Под степенью окисленности (n) понимают тот условный заряд атома, который вычисляется, исходя из предположения, что молекула состоит только из ионов.
Для вычисления степени окисленности элемента в соединении следует исходить из следующих положений:
степени окисленности элементов в простых веществах принимаются равными нулю;
алгебраическая сумма степеней окисленности всех атомов, входящих в состав молекулы, равна нулю;
постоянную степень окисленности в соединениях проявляют щелочные металлы (+1), металлы главной подгруппы II группы (+2);
водород проявляет степень окисленности +1 во всех соединениях, кроме гидридов металлов (NaH, CaH2 и т.п.), где степень окисленности равна –1;
степень окисленности кислорода в соединениях равна –2 , за исключением пероксидов (-1) и фторида кислорода OF2 (+2).
Окисление-восстановление – это единый взаимосвязанный процесс. Отдача атомов электронов, сопровождающаяся повышением его степени окисленности, называется окислением, присоединение атомом электронов, приводящее к понижению его степени окисленности, называется восстановлением. Вещество, в состав которого входит окисляющий элемент называется восстановителем; вещество, содержащее восстанавливающийся элемент, называется окислителем. Атом элемента в своей высшей степени окисленности не может ее повысить (отдавать электроны) и проявляет только окислительные свойства, а в своей низшей степени окисленности не может ее понизить (принять электроны) и проявляет только восстановительные свойства. Атом же элемента, имеющий промежуточную степень окисленности, может проявлять как окислительные, так и восстановительные свойства.
Например:
N5+(HNO3) проявляет только окислительные свойства;
N4+(NO2) проявляет окислительные и восстановительные свойства;
N3+(HNO2) проявляет окислительные и восстановительные свойства;
N2+(NO) проявляет окислительные и восстановительные свойства;
N1+(N2O) проявляет окислительные и восстановительные свойства;
N0(N2) проявляет окислительные и восстановительные свойства;
N1-(NH2OH) проявляет окислительные и восстановительные свойства;
N2-(N2H2) проявляет окислительные и восстановительные свойства;
N3-(NH3) проявляет только восстановительные свойства.
Пример 1. Исходя из степени окисленности (n) азота, серы и марганца в соединениях NH3 HNO2 HNO3 H2S H2SO3 H2SO4 MnO2 KMnO4, определите какие из них могут быть только восстановителями, только окислителями, и какие проявляют как окислительные, так и восстановительные свойства.
Решение. Степень окисленности для азота в указанных соединениях соответственно равна: -3 (низшая), +3 (промежуточная), +5 (высшая); n для серы соответственно равна –2 (низшая), +4 (промежуточная), +6 (высшая); n для марганца соответственно равна +4 (промежуточная), +7 (высшая). Отсюда: NH3, H2S – только восстановители; HNO3, H2SO4, KMnO4 – только окислители; HNO2, H2SO3, MnO2 – окислители и восстановители.
Пример 2. Могут ли проходить окислительно-восстановительные реакции между следующими веществами:
а) H2S и HJ;
б) H2S и H2SO3;
в) H2SO3 и HClO4?
Решение.
а) Степень окисленности в H2S n(S)=-2; в HJ n(J)=-1. Так как и сера, и йод находятся в своей низшей степени окисления, то оба взятые вещества проявляют только восстановительные свойства и взаимодействовать друг с другом не могут;
б) в H2S n(S)=-2 (низшая), в H2SO3 n(S)=+4 (промежуточная). Следовательно, взаимодействие этих веществ возможно, причем H2SO3 является окислителем;
в) в H2SO3 n(S)=+4 (промежуточная), в HClO4 n(Cl)=+7 (высшая). Взятые вещества могут взаимодействовать. H2SO3 в этом случае будет проявлять восстановительные свойства.
Пример 3. Составьте уравнение окислительно-восстановительной реакции идущей по схеме
+3 +7 +2 +5
H3PO3+KMnO4+H2SO4=MnSO4+H3PO4+K2SO4+H2O
Решение. Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяет свою степень окисленности восстановитель и окислитель, и отражаем это в электронных уравнениях:
восстановитель 5 P3+-2e-=P5+ - процесс окисления
окислитель 2 Mn7++5e-=Mn2+ - процесс восстановления
Общее число электронов отданных восстановителем, должно быть равно числу электронов, которое присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов десять. Разделив это число на 5, получаем коэффициент 2 для окислителя, а при делении 10 на 2 получаем коэффициент 5 для восстановителя. Коэффициент перед веществами, атомы которых не меняют свою степень окисленности, находят подбором. Уравнение реакции будет иметь вид:
5H3PO3+2KMnO4+3H2SO4=2MnSO4+5H3PO4+K2SO4+3H2O
Пример 4. Составьте уравнение реакции взаимодействия цинка с концентрированной серной кислотой, учитывая максимальное восстановление последней.
Решение. Цинк, как и любой металл, проявляет только восстановительные свойства.
В концентрированной серной кислоте окислительную функцию несет сера (+6). Максимальное восстановление серы означает, что приобретает минимальную степень окисленности. Минимальная степень окисленности серы как элемента VI группы равна –2. Цинк как металл II группы имеет постоянную степень окисленности +2. Поэтому электронные уравнения будут иметь вид:
в
осстановитель
4 Zn0-2e-=Zn2+
- процесс окисления
окислитель 1 S6++8e-=S2- - процесс восстановления
Составляем уравнение реакции:
4Zn+5H2SO4=4ZnSO4+H2S+4H2O
Перед H2SO4 стоит коэффициент 5, а не 1, так как четыре молекулы H2SO4 идут на связывание четырех ионов Zn2+.
Пример 5. Определите типы окислительно-восстановительных реакций для следующих процессов:
а) H2S+ HNO3= H2SO4+ NO2+ H2O
б) H3PO3= H3PO4+ PH3
в) (NH4)2Cr2O7=N2+ Cr2O3+ H2O
Решение.
2- 5+ 6+ 4+
а) H2S+8HNO3= H2SO4+8NO2+4H2O
в
осстановитель
1 S2-
-8e-=S6+
процесс окисления
окислитель 8 N5++1e-=N4+ процесс восстановления
В этой реакции взаимодействуют два вещества, одно из которых служит восстановителем, а другое – окислителем. Такие реакции относятся к реакциям межмолекулярного окисления-восстановления.
3+ 5+ 3-
б) 4H3PO3=3H3PO4+ PH3
в
осстановитель
3 P3+-2e-=P5+
процесс окисления
4{
окислитель 1 P3++6e-=P3- процесс восстановления
В этой реакции исходное вещество проявляет функции как окислителя, так и восстановителя. Такие реакции являются реакциями самоокисления-самовосстановления (диспропорционирования).
3- 6+ 0 3+
в) (NH4)2Cr2O7= N2+ Cr2O3+ H2O
в осстановитель 1 2N3- -6e-=2N0 процесс окисления
окислитель 1 2Cr6++6e-=2Cr3+ процесс восстановления
В этой реакции и окислитель, и восстановитель входят в состав одного и того же вещества. Реакции такого типа называются реакциями внутримолекулярного окисления-восстановления.