- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 7. Введение в проблему статистического вывода
нятие односторонней альтернативы (1-tailed) (например, Н^ г>0). В этом случае, если принят уровень а для решения об отклонении Но, существует одно теоретическое (критическое) значение (для Н,: г>0 — положительное), и оно отсекает ровно а справа (или слева — в зависимости от направления альтернативы). Очевидно, что односторонняя альтернатива более «лояльна» к отклонению Но для одних и тех же выборочных результатов. При двусторонней альтернативе, по сравнению с односторонней, нулевая гипотеза отвергается при больших значениях силы связи (корреляции, различий средних и пр.).
Важно отметить, что принятие по результатам проверки гипотезы ненаправленной альтернативы вовсе не означает ограничение выводов лишь «ненаправленными» суждениями типа: «средние различаются», «корреляция отличается от нуля». Как следует из предыдущих рассуждений, проверка ненаправленной гипотезы является более «строгой» (при прочих равных условиях). Принятие ненаправленной (двусторонней) альтернативы позволяет сделать вывод о направлении связи в генеральной совокупности в соответствии с выборочными данными.
ПРИМЕР
При проверке статистической значимости коэффициентов корреляции обычно используются ненаправленные альтернативы (Но: г = 0 против Н^ г^ 0). Однако если Но отклоняется, например, при г-—0,34, то вывод не ограничивается констатацией отличия от нуля, а распространяется и на знак связи: «обнаружена статистически достоверная отрицательная корреляция».
Ранее отмечалось, что определение р-уровня значимости — чисто техническая процедура, выполняемая компьютерной программой автоматически, а при расчетах «вручную» — по таблицам теоретических распределений (критических значений). Тем не менее, полезно знать, что существует простое соотношение между /ьуровнями для направленных и ненаправленных альтернатив. Для одного и того же эмпирического значения критерия р-уровень значимости для направленной альтернативы в 2 раза меньше р-уровня для ненаправленной альтернативы.
ПРИМЕР
Предположим, сравниваются две дисперсии. При использовании таблицы критических значений для критерия /^Фишера (для направленных альтернатив) (приложение 3) эмпирическое значение оказалось между критическими для р = 0,05 и /7 = 0,01. Следовательно, для направленной альтернативы р< 0,05. Однако при сравнении двух дисперсий проверяется двусторонняя (ненаправленная) альтернатива, поэтому действительный уровень значимости в данном случае — р < 0,1.
Различие между направленной и ненаправленной альтернативами, кажется, еще более усложняет и без того непростую логику статистической проверки гипотез. Однако в большинстве случаев выбор альтернативы не является проблемой для исследователя — он определен самим методом (критерием) статисти-
107
Часть II. Методы статистического вывода: проверка гипотез
ческой проверки и исключает возможность произвола. То, какая альтернатива предполагается, указывается явным образом при описании метода проверки. При проверке гипотезы с помощью таблиц критических значений указывается, для какой альтернативы приведены критические значения. А при использовании статистической компьютерной программы в результатах указывается, для какой альтернативы приведен /^-уровень значимости. Например, при обработке в среде программы SPSS: Sig. (2-taiIed) —/^-уровень значимости (двусторонний), Sig. (I-tailed) — р-уровень значимости (односторонний).
СОДЕРЖАТЕЛЬНАЯ ИНТЕРПРЕТАЦИЯ СТАТИСТИЧЕСКОГО РЕШЕНИЯ
Статистическое решение является основанием для содержательного вывода в отношении проверяемой гипотезы. Но гарантирует ли отклонение Но истинность содержательной гипотезы о наличии связи или различий? Может ли принятие Но служить основанием для вывода об отсутствии связи или различий?
Принятие Но. Из обсуждения оснований принятия статистического решения следует, что, когда принимается Но, всегда остается вероятность того, что связь или различия все же есть. И мы ничего не можем сказать о том, насколько велика или мала эта вероятность.
Принятие Но не означает, что различия отсутствуют или мера связи равна нулю; из этого следует только то, что статистически значимые результаты не обнаружены.
Когда в результате исследования принимается Но, никакого содержательного вывода сделать нельзя. Поэтому выражение «Отрицательный результат исследования — тоже результат» имеет для исследователя исключительно психотерапевтическое значение: отрицательный результат исследования — это отсутствие какого бы то ни было результата!
Отклонение Но. В этом случае остается вероятность того, что Но все-таки верна и эта вероятность равна/?-уровню значимости. Следовательно, нельзя утверждать, что результаты доказывают справедливость содержательной гипотезы. Корректным будет более осторожный вывод о том, что получено свидетельство в пользу содержательной гипотезы.
Не менее рискован содержательный вывод о причинно-следственной зависимости между изучаемыми явлениями только на основании статистической значимости связи между соответствующими признаками. Конечно, статистическая связь между признаками — это необходимое, но не достаточное условие причинно-следственной связи между ними. Утверждение о том, что явление А есть причина явления В, справедливо, если одновременно выполняются три условия (Д. Кэмпбелл, 1980): а) явления А и i?статистически связаны; б) А происходит раньше В; в) отсутствует альтернативная интерпрета-
108
