
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 7- введение в проблему статистического вывода
(1 —а) характеризует степень доверия к результатам статистической проверки и называется доверительной вероятностью.
Итак, основная проблема статистического вывода заключается в том, что заранее должно быть установлено оптимальное значение величины а, удовлетворяющее двум противоречивым требованиям. Величина а должна быть достаточно мала, чтобы обеспечивать доверие к результатам исследования при отклонении Но. Величина а должна быть достаточно велика, чтобы отклонить Но при наличии связи (различий), не допуская ошибки II рода. Вопрос о том, какая же величина а является приемлемой, не имеет однозначного ответа. Есть лишь общие соображения, которыми можно руководствоваться при назначении а для статистического вывода:
Для установленного значения а вероятность ошибки (3 уменьшается с ростом объема выборки.
Вероятность ошибки (3 уменьшается при увеличении значения а (на пример, с 0,01 до 0,05).
Вопрос о величине а — вопрос о том, при каком же /7-уровне исследователь может отклонить Но, решается преимущественно исходя из неформальных соглашений, принятых на основе практического опыта в различных областях исследования. Традиционная интерпретация различных уровней значимости исходит из а = 0,05 и приведена в табл. 7.1. В соответствии с ней приемлемым для отклонения Но признается уровень р < 0,05. Такая относительно высокая вероятность ошибки I рода может быть рекомендована для небольших выборок (когда высока вероятность ошибки II рода). Если объемы выборок около 100 и более объектов, то порог отклонения Но целесообразно снизить до а = 0,01 и принимать решение о наличии связи (различий) при р < 0,01.
Таблица 7.1 Традиционная интерпретация уровней значимости при а = 0,05
Уровень значимости |
Решение |
Возможный статистический вывод |
р > 0,1 |
Принимается Но |
«Статистически достоверные различия не обнаружены» |
р<0,1 |
сомнения в истинности Н(), неопределенность |
«Различия обнаружены на уровне статистической тенденции» |
/?< 0,05 |
значимость, отклонение Н() |
«Обнаружены статистически достоверные (значимые) различия» |
р < 0,01 |
высокая значимость, отклонение Но |
«Различия обнаружены на высоком уровне статистической значимости» |
ЧАСТЬ П. МЕТОДЫ СТАТИСТИЧЕСКОГО ВЫВОДА: ПРОВЕРКА ГИПОТЕЗ
НАПРАВЛЕННЫЕ И НЕНАПРАВЛЕННЫЕ АЛЬТЕРНАТИВЫ
Основная (нулевая) статистическая гипотеза, как отмечалось, содержит утверждение о равенстве нулю (коэффициента корреляции) или о равенстве средних значений, дисперсий и т. д. Если по результатам статистической проверки основная гипотеза отклоняется, то принимается альтернативная гипотеза. Принимаемая альтернатива может быть как направленной (например, Н}: г > О или Н,: М1 > М2), так и не направленной (например, Н],1 г ^ 0 или Н,: Л/, ^ М2). То, какая альтернатива должна быть принята по результатам проверки, зависит от применяемого для проверки метода и теоретического распределения. Обычно характер альтернативы явно указывается при описании метода.
В большинстве случаев направленность или ненаправленность альтернативы зависит от формы теоретического распределения. Если оно симметрично и включает отрицательные значения, то обычно применяются ненаправленные альтернативы. Это относится к таким теоретическим распределениям, KaKZ-распределение (нормальное распределение), распределение f-Стьюден-та и т. д. Если распределение асимметрично и может принимать только положительные значения, то применяются направленные альтернативы, например, при использовании критериев %2-Пирсона или /"-Фишера, хотя встречаются и исключения. Важно отметить, что выбор альтернативы — направленной или ненаправленной — исключает произвол исследователя и обычно задается выбранным методом проверки гипотезы.
Если процедура проверки гипотезы Но подразумевает ненаправленную альтернативу, то критические области, соответствующие ее отклонению (принятию альтернативы), поровну распределяются по обоим «хвостам» распределения (рис. 7.4). Чаще всего интервал принятия нулевой гипотезы (1 —а) при этом охватывает диапазон теоретических значений, симметричный относительно нуля (вспомним Z-распределение). Поэтому такие критерии часто называют двусторонними (2-tailed), имеющими «двахвоста» —для проверки ненаправленных гипотез. Заметим, что в этом случае, если принят уровень а для решения об отклонении Но, существует два теоретических (критических) значения: одно отсекает а/2 справа, а другое, отрицательное — а/2 слева. Если проверяется направленная гипотеза, то процедура проверки допускает при-
о t3 -t3 о и
а) б)
Рис. 7.4. Различие направленной (а) и ненаправленной (б) альтернатив (для одного и того же эмпирического значения р-уровень в случае (б) в два раза больше, чем в случае (а))
106