Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Nasledov 7-13.doc
Скачиваний:
14
Добавлен:
01.05.2025
Размер:
2.67 Mб
Скачать

Глава 13. Дисперсионный анализ (anova)

Рис. 13.2. Графики средних значений успешности группового решения задачи

(к данным примера 13.5)

Приведенные примеры демонстрируют эффективность визуального ана­лиза графиков средних значений: если линии, соответствующие разным уров­ням одного из факторов, не параллельны, то можно предполагать наличие взаимодействия факторов. Однако окончательное заключение об этом мож­но сделать только при статистическом подтверждении гипотезы о взаимодей­ствии по результатам ANOVA. Таким образом, графики средних значений особенно полезны для интерпретации обнаруженного статистически досто­верного взаимодействия факторов.

Исходные предположения многофакторного ANOVA: распределение зави­симой переменной в сравниваемых генеральных совокупностях (соответству­ющих ячейкам дисперсионнго комплекса) характеризуется нормальным за­коном и одинаковыми дисперсиями. Выборки в каждой ячейке являются случайными и независимыми.

Ограничения: если выборки (ячейки) заметно различаются по численности и их дисперсии различаются статистически достоверно, то метод неприме­ним. Число наблюдений в каждой ячейке не должно быть меньше 2 (желатель­но — не менее 5). Проверка допустимости применения ANOVA сводится к про-

205

ЧАСТЬ П. МЕТОДЫ СТАТИСТИЧЕСКОГО ВЫВОДА: ПРОВЕРКА ГИПОТЕЗ

верке однородности дисперсии в сравниваемых выборках в случае, если они заметно различаются по численности. Для проверки однородности диспер­сии применяется критерий Ливена (Levene's Test of Homogeneity ofVariances).

Дополнительно возможны множественные сравнения средних значений, позволяющие сделать вывод о том, как различаются друг от друга средние зна­чения, соответствующие разным градациям факторов.

Общая схема двух- (и более) факторного ANOVA принципиально не отли­чается от однофакторного случая и определяется выделением в общей измен­чивости зависимой переменной (SStol) ее внутригрупповой (случайной, SSwg) и межгрупповой (факторной, SSbg) составляющих:

SStot= S^wg + SSfrg.

Отличие заключается в выделении дополнительных составляющих меж­групповой (факторной) изменчивости в соответствии с проверяемыми гипо­тезами. Для двухфакторного случая:

SSf,g = SSA + SSB + SSAb,

где SSA, SSB — суммы квадратов для факторов Аи В, a SSAB — сумма квадратов для взаимодействия факторов. Соответственно, для каждого источника из­менчивости далее вычисляются степени свободы и средние квадраты, вычис­ляются /'-отношения для проверяемых гипотез и определяютсяр-уровни зна­чимости.

Последовательность вычислений основных показателей для двухфакторного ANOVAрассмотрим на упрощенном примере — при равной численности срав­ниваемых выборок (объектов в ячейках). Для случая с неравной численнос­тью наблюдений в ячейках логика и общая последовательность вычислений не меняются, хотя сами вычисления и становятся более громоздкими.

Фактор А

Фактор В

1

2

3

1

Ми

Ми

мм

2

мп

м23

ма

мвъ

м

Численность каждой ячейки равна п, общее число наблюдений — 6/7 = N.

Напомним, что двухфакторный ANOVA проверяет 3 статистические гипо­тезы: а) о главном эффекте фактора А (о различии Мм и МА2); б) о главном эффекте фактора В (о различии Мт, Mm и Мвз); в) о взаимодействии факто­ров Аи В (влияние фактора А различается для разных уровней фактора В, и наоборот).

Межгрупповая (SSbg) и внутригрупповая (SS^) суммы квадратов вычисля­ются как составные части общей суммы квадратов (SSlot):

206

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]