- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 13. Дисперсионный анализ (anova)
Фактор А |
Фактор В |
|
||
1 |
2 |
3 |
||
1 |
Мп |
Мп |
М13 |
мм |
2 |
Мп |
М22 |
м1г |
мА2 |
|
мп |
мт |
мю |
м |
Математическая модель двухфакторного ANOVA, как и в однофакторном случае, предполагает выделение двух основных частей вариации зависимой переменной: внутригрупповой, обусловленной случайными причинами, и межгрупповой, обусловленной влиянием факторов. В межгрупповой изменчивости, в свою очередь, выделяются три ее составляющие:
□ влияние (главный эффект) 1-го фактора;
П влияние (главный эффект) 2-го фактора;
П взаимодействие факторов.
Соответственно, двухфакторный ANOVA включает в себя проверку трех гипотез: а) о главном эффекте 1-го фактора; б) о главном эффекте 2-го фактора; в) о взаимодействии факторов.
Проблема взаимодействия факторов, которая обеспечивает уникальность и незаменимость многофакторного ANOVA, заслуживает отдельного рассмотрения. Понятие взаимодействия двух независимых факторов было введено основателем дисперсионного анализа Р. Фишером для обозначения ситуации, когда влияние одного фактора на зависимую переменную проявляется по-разному на разных уровнях другого фактора.
ПРИМЕР 13.4 (Солсо Р., МакЛин М. К., с. 58-59)
Студентам колледжа предложили написать сочинение в поддержку закона о самоуправлении, противниками которого все они являлись. Испытуемым либо давали задание написать такое сочинение (условие без выбора), либо предлагали самим выбирать — писать или не писать (условие с выбором) (фактор А: 2 уровня). Кроме того, половине испытуемых в каждой из групп платили по 0,5$, а другой половине — 2,5$ за написание этого сочинения (фактор В: 2 уровня). В каждую из 4-х групп случайно отбиралось по 10 студентов. Зависимой переменной являлась степень изменения отношения студентов к закону о самоуправлении после написания сочинения. Средние значения изменения отношения для различных групп:
Фактор А |
Фактор В |
Средние |
|
0,5$ (1) |
2,5$ (2) |
||
Нет выбора (1) |
-0,05 |
+0,63 |
0,29 |
Свободный выбор (2) |
+1,25 |
-0,07 |
0,59 |
Средние: |
0,6 |
0,28 |
0,44 |
Результаты (рис. 13.1) демонстрируют взаимодействие факторов: размер вознаграждения (фактор В) по-разному влияет на изменение отношения — в зависимости от наличия или отсутствия свободного выбора (фактор А).
203
В условиях отсутствия выбора отношение испытуемых к закону о самоуправлении улучшилось в случае большего вознаграждения; в условиях же свободного выбора наблюдалась обратная картина: более хорошее отношение продемонстрировали те, кто получил меньшее вознаграждение.
ПРИМЕР 13.5
Предположим, изучается влияние на успешность группового решения задачи численности группы и наличия или отсутствия лидера в группе. Зависимая переменная — время решения задачи в минутах. Фактор А — размер группы, три градации: 1 — 2—3 человека; 2 — 5—7 человек; 3—10-15 человек. Фактор В — наличие лидера: 1 — есть; 2 — нет. В качестве объектов выступают группы. В зависимости от стиля лидерства, сложности задания и других причин, которые не учитываются, можно было бы получить разные эффекты взаимодействия факторов численности группы и наличия лидерства (рис. 13.2). График 1 демонстрирует сильное взаимодействие факторов (группы большей численности более эффективны, если в них есть лидер, а группы малой численности — при отсутствии лидера), а график 3 — более слабое взаимодействие (наличие лидера играет роль лишь в группах большой численности). Графики 2 и 4 соответствуют ситуации отсутствия взаимодействия.
