- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 13. Дисперсионный анализ (anova)
сии сравниваемых групп (уровней) однородны, а вторая — для случая неоднородности дисперсий по критерию Ливена.
Получены те же результаты, что и при вычислении «вручную» (пример 13.3). По результатам можно сделать вывод о статистически достоверно более высокой продуктивности воспроизведения слов при третьем условии, по сравнению с двумя другими условиями.
С) Результаты парных сравнений средних значений по методу Шеффе:
Post Hoc Tests Multiple Comparisons Dependent Variable: VOSPR Scheffe
(I) Fl |
(J) Fl |
Mean Difference (I-J) |
Std. Error |
-Sig. |
95% Confidence Interval |
|
Lower Bound |
Upper Bound |
|||||
1.00 |
2.00 |
-2.0000 |
1.00000 |
.178 |
-4.7876 |
.7876 |
|
3.00 |
-4.0000 (*) |
1.00000 |
.006 |
-6.7876 |
-1.2124 |
2.00 |
1.00 |
2.0000 |
1.00000 |
.178 |
-.7876 |
4.7876 |
|
3.00 |
-2.0000 |
1.00000 |
.178 |
-4.7876 |
.7876 |
3.00 |
1.00 |
4.0000 (*) |
1.00000 |
.006 |
1.2124 |
6.7876 |
|
2.00 |
2.0000 |
1.00000 |
.178 |
-.7876 |
4.7876 |
* The mean difference is significant at the .05 level.
Также, как и для вычислений «вручную» (пример 13.2), получено статистически значимое различие между уровнями 1 и 3 (S ig. = 0,006).
Дополнительно выдаются результаты проверки однородности дисперсии для сравниваемых выборок:
Homogeneous Subsets
VOSPR
Scheffe
Fl |
N |
Subset for alpha = .05 |
|
1 |
2 |
||
1.00 |
5 |
5.0000 |
|
2.00 |
5 |
7.0000 |
7.0000 |
3.00 |
5 |
|
9.0000 |
Sig. |
|
.178 |
.178 |
Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 5.000.
Результаты демонстрируют отсутствие статистически достоверных различий дисперсий 1 и 2 (Sig. = 0 ,17 8), 2 и 3(Sig. = 0 ,17 8) выборок, что убеждает в корректности парных сравнений средних значений.
201
Часть II. Методы статистического вывода: проверка гипотез
МНОГОФАКТОРНЫЙ ANOVA
Многофакторный ANOVA предназначен для изучения влияния нескольких факторов (независимых переменных) на зависимую переменную и часто обозначается в соответствии с количеством факторов и числом их градаций. Например, обозначение ANOVA 3x2x2 свидетельствует о трехфакторном ANOVA (число градаций: первого фактора — 3, второго фактора — 2, третьего фактора — 2), который применяется для сравнения 12 групп (условий) (так как 3x2x2 = 12).
Принципиально этот метод не отличается от однофакторного ANOVA. Однако он позволяет оценивать не только влияние (главные эффекты) каждого фактора в отдельности, но и взаимодействие факторов: зависимость влияния одних факторов от уровней других факторов. Возможность изучать взаимодействие факторов — главное преимущество многофакторного ANOVA, которое позволяет получать зачастую наиболее интересные результаты исследования.
С целью облегчения изложения материала в качестве основного варианта многофакторного ANOVA мы сначала рассмотрим двухфакторный его вариант (2-Way ANOVA), а затем сделаем необходимые дополнения в отношении большего количества факторов.
Структура исходных данных (2-факторный ANOVA). Для каждого объекта (испытуемого) выборки измерено значение зависимой переменной (Y), а также определена его принадлежность к одной из градаций (уровней) одного фактора (Хх) и к одной из градаций (уровней) другого фактора (Х2). Таблица исходных данных для компьютерной обработки включает две номинативные переменные, соответствующие факторам, и одну метрическую (зависимую) переменную:
№ объектов |
Хх (Фактор I) |
Х2 (Фактор 2) |
^(Зависимая переменная) |
1 |
1 |
2 |
8 |
2 |
3 |
2 |
9 |
3 |
2 |
1 |
4 |
4 |
1 |
1 |
5 |
|
|
|
|
N |
2 |
2 |
6 |
Модель для данных может быть представлена в виде дисперсионного комплекса ~ таблицы, строки которой соответствуют градациям (уровням) одного фактора: 1, 2, ...,/, ...,к; а столбцы — уровням другого фактора: 1, 2,...,/,..., /. Количество ячеек дисперсионного комплекса равно kxl и соответствует количеству разных групп объектов (испытуемых). Каждая ячейка с номером ij характеризуется своим сочетанием уровней факторов, численностью объектов Пу и средним значением зависимой переменной Му. Например, дисперсионный комплекс для ANOVA 2x3:
202
