
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 7. Введение в проблему статистического вывода
V
Выбор
критерия представляет собой отдельную
проблему
будет рассматриваться нами в следующей главе. А сейчас будем исходить из того, что исследователь уже решил проблему выбора критерия, и рассмотрим общую последовательность проверки гипотезы.
При обработке данных на компьютере при помощи статистической программы (например, SPSS) исследователю достаточно указать программе, какой критерий (метод, тест) необходимо применить к заданной выборке исходных данных. Далее программа сама вычисляет эмпирическое значение критерия и сопоставляет его с теоретическим распределением. В качестве результата исследователь получает значение ^-уровня значимости, наряду с эмпирическим значением критерия и числом степеней свободы.
Когда расчеты производятся «вручную», исследователь совершает более сложную последовательность действий для проверки гипотезы, включающую применение специальных таблиц критических значений критерия:
Выбор критерия в зависимости от вида исходных данных и статистичес кой гипотезы: теоретического распределения, формул расчета эмпири ческого значения критерия и числа степеней свободы.
Расчет по исходным данным (или по имеющимся статистикам) эмпи рического значения критерия и числа степеней свободы.
Применение «Таблицы критических значений критерия» позволяет оп ределить значение /?-уровня для данного числа степеней свободы.
Таблица критических значений содержит значения (квантили) теоретического распределения, соответствующие наиболее важным — критическим значениям /ьуровня (0,1; 0,05; 0,01 и т. д.) для различных чисел степеней свободы. /7-уровепь значимости по вычисленному эмпирическому значению критерия при помощи таких таблиц определяется следующим образом. Для данного числа степеней свободы по таблице определяются ближайшие критические значения и/?-уровни, им соответствующие. Далее значение р-уровня определяется в виде неравенства по правилу, которое демонстрируется на рис. 7.2 (значимость возрастает слева направо, в соответствии с убыванием /ьуровня):
П если эмпирическое значение критерия (Кэ) находится между двумя критическими значениями, то /^-уровень меньше того критического р, которое находится левее;
101
Часть II. Методы статистического вывода: проверка гипотез
П если К^ находится левее крайнего левого критического значения (обычно это соответствует критическому^ = 0,1, реже — р = 0,05), то ^-уровень больше, чем крайнее правое критическое значение р;
О если Кэ находится правее крайнего правого критического значения, то /ьуровень меньше крайнего правого критического р.
Например, если эмпирическое значение критерия (Кэ) находится между А^05 и А'оо,, то р < 0,05. Если Кэ находится левее ЛГО>Ь то р > 0,1. Если А^ находится правее АоОП,, тор < 0,001.
Решение исследователя:
р>0,1 р<0,1 р<0,05 р < 0,01 р< 0,001
Рис. 7.2. Схема определения/^-уровня (р~ ... — критические значения/ьуровня, К — соответствующие критические значения критерия)
Для разных критериев возможны разные соотношения между р-уровнем и величиной критических его значений. Для большинства критериев (t, F, у} и др.) — чем больше значение критерия, тем выше статистическая значимость (меньше/^-уровень). Но для некоторых критериев зависимость обратная. Например, £/-Манна-Уитни или Т-Вилкоксона убывают по мере увеличения уровня значимости (уменьшения ^-уровня). Тем не менее, правило остается общим, в соответствии со схемой на рис. 7.2. Например, если t3 находится между /0, и г005 (т. е. /0,i < t3< tQ$5), тор < 0,1. И если 1/э находится между UQl и £/о,о5 (т.е- ^о,о5 < &>< £/o,i)>to/K 0,1. Если же эмпирическое значение попадает левее критического для р = 0,1 (/э < tQ>ь но С/э > Uo^), то уровень значимости определяется как/j > 0,1.
ПРИМЕРЫ
Гипотеза Но: М -100 проверяется при помощи критерия /-Стьюдента. Для вы числения эмпирического значения критерия t3 применяется формула 7.2. На выборке vV= 36 получены следующие значения статистик: М= 107,5, о = 15. По формуле 7.2 t3- 3, df= 35. Далее воспользуемся таблицей критических значений /-Стьюдента (приложение 2). В этой таблице строки соответствуют df— числам степеней свободы, столбцы — критическим значениям р-уровня. В строке для df— 35 обнаруживаем, что наше эмпирическое значение попадает в интервал между значениями 2,724 (для р - 0,01) и 3,591 (для р ~ 0,001). Следовательно, вероятность того, что Но верна, р < 0,01.
Предположим, та же гипотеза проверяется на выборке N — 36, но получены сле дующие значения статистик: М= 102,5, а— 15. По формуле 1Э=\, df= 35. Вос пользовавшись той же таблицей критических значений, обнаруживаем, что наше эмпирическое значение меньше, чем /Oil = 1,69. Следовательно, в соответ ствии со схемой на рис. 7.2, р > 0,1.
102