Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Nasledov 7-13.doc
Скачиваний:
14
Добавлен:
01.05.2025
Размер:
2.67 Mб
Скачать

Глава 13. Дисперсионный анализ (anova)

фактора. Основной показатель для принятия решения — ^-уровень значимо­сти критерия /-Фишера.

Дополнительно возможны множественные сравнения средних значений, позволяющие сделать вывод о том, как различаются друг от друга средние зна­чения для разных градаций фактора.

Рассмотрим общие принципы и последовательность вычислений для од-нофакторного ANOVA в случае равной численности сравниваемых выборок.

Исходная идея ANOVA заключается в возможности разложения показателя изменчивости признака на две составляющие: изменчивость внутри групп и изменчивость между группами. В качестве показателя изменчивости исполь­зуется сумма квадратов отклонения значений признака от среднего, которая обозначается SS (Sum of Squares).

Общая (Total) сумма квадратов (SStolai) является показателем общей измен­чивости зависимой переменной и представляет собой числитель дисперсии:

/=]

Соответственно, общая сумма квадратов равна сумме межгрупповой и внут ригрупповой сумм квадратов:

Межгрупповая (Between-Group) сумма квадратов (SSbg) показатель измен чивости между к группами (каждая численностью п объектов):

где Mj среднее значение для группы/

Отношение межгрупповой и общей суммы квадратов показывает долю об­щей дисперсии зависимой переменной, обусловленную влиянием фактора. Этот показатель идентичен по смыслу квадрату коэффициента корреляции в ре­грессионном анализе, поэтому тоже называется коэффициентом детермина­ции (R1):

°°total

Коэффициент детерминации может принимать значения от 0 до 1. Чем больше этот показатель, тем больше влияние изучаемого фактора на диспер­сию зависимой переменной. Помноженный на 100, он выражает процент уч­тенной дисперсии.

Внутригрупповая (Within-Group) сумма квадратов (SSwg) — показатель слу­чайной изменчивости (внутри групп):

ее _ ее _ ее _

191

На величину сумм квадратов влияет численность и количество сравнивае­мых групп. Поэтому для сопоставления межгрупповой и внутригрупповой изменчивости используются средние квадраты (обозначается MS от анг­лийского Mean of Squares). Средний квадрат — это частное от деления суммы квадратов на соответствующее число степеней свободы.

Каждая сумма квадратов характеризуется своим числом степеней свободы (df). Так, общее число степеней свободы соответствует общей сумме квадратов и равно:

Заметим, что частное от деления общей суммы квадратов на общее число степеней свободы — общий средний квадрат — это общая дисперсия.

Число степеней свободы для межгрупповой суммы квадратов равно числу сла­гаемых минус один (число групп минус 1):

Следует отметить, что тот и другой средние квадраты представляют собой различные выборочные оценки одной и той же генеральной дисперсии — для случая, когда сравниваемые средние не различаются. Однако это не так в слу­чае, если хотя бы два из всех сравниваемых средних различаются: тогда меж­групповой средний квадрат превысит внутригрупповой средний квадрат. И чем больше величина отношения межгруппового к внутригрупповому среднему квадрату, тем больше оснований считать, что сравниваемые средние значе­ния различаются. Соответственно, основным показателем ANOVA является F-отношение — эмпирическое значение критерия F-Фишера:

Процедура проверки Но подразумевает направленную альтернативу, так как ее отклонению соответствует только большее значение F3 (MSbg > MSwg). По­этому для определения р-уровня значимости при вычислениях «вручную» при­меняются таблицы критических значений /'-распределения для направлен­ных альтернатив (односторонний критерий). Для одних и тех же ^уровень значимости возрастает (/ьуровень убывает) при возрастании Гэ.

192

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]