- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 13. Дисперсионный анализ (anova)
фактора. Основной показатель для принятия решения — ^-уровень значимости критерия /-Фишера.
Дополнительно возможны множественные сравнения средних значений, позволяющие сделать вывод о том, как различаются друг от друга средние значения для разных градаций фактора.
Рассмотрим общие принципы и последовательность вычислений для од-нофакторного ANOVA в случае равной численности сравниваемых выборок.
Исходная идея ANOVA заключается в возможности разложения показателя изменчивости признака на две составляющие: изменчивость внутри групп и изменчивость между группами. В качестве показателя изменчивости используется сумма квадратов отклонения значений признака от среднего, которая обозначается SS (Sum of Squares).
Общая (Total) сумма квадратов (SStolai) является показателем общей изменчивости зависимой переменной и представляет собой числитель дисперсии:
/=]
Соответственно, общая сумма квадратов равна сумме межгрупповой и внут ригрупповой сумм квадратов:
Межгрупповая (Between-Group) сумма квадратов (SSbg) — показатель измен чивости между к группами (каждая численностью п объектов):
где Mj — среднее значение для группы/
Отношение межгрупповой и общей суммы квадратов показывает долю общей дисперсии зависимой переменной, обусловленную влиянием фактора. Этот показатель идентичен по смыслу квадрату коэффициента корреляции в регрессионном анализе, поэтому тоже называется коэффициентом детерминации (R1):
°°total
Коэффициент детерминации может принимать значения от 0 до 1. Чем больше этот показатель, тем больше влияние изучаемого фактора на дисперсию зависимой переменной. Помноженный на 100, он выражает процент учтенной дисперсии.
Внутригрупповая (Within-Group) сумма квадратов (SSwg) — показатель случайной изменчивости (внутри групп):
ее _ ее _ ее _
191
На величину сумм квадратов влияет численность и количество сравниваемых групп. Поэтому для сопоставления межгрупповой и внутригрупповой изменчивости используются средние квадраты (обозначается MS — от английского Mean of Squares). Средний квадрат — это частное от деления суммы квадратов на соответствующее число степеней свободы.
Каждая сумма квадратов характеризуется своим числом степеней свободы (df). Так, общее число степеней свободы соответствует общей сумме квадратов и равно:
Заметим, что частное от деления общей суммы квадратов на общее число степеней свободы — общий средний квадрат — это общая дисперсия.
Число степеней свободы для межгрупповой суммы квадратов равно числу слагаемых минус один (число групп минус 1):
Процедура проверки Но подразумевает направленную альтернативу, так как ее отклонению соответствует только большее значение F3 (MSbg > MSwg). Поэтому для определения р-уровня значимости при вычислениях «вручную» применяются таблицы критических значений /'-распределения для направленных альтернатив (односторонний критерий). Для одних и тех же ^уровень значимости возрастает (/ьуровень убывает) при возрастании Гэ.
192
