Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Nasledov 7-13.doc
Скачиваний:
14
Добавлен:
01.05.2025
Размер:
2.67 Mб
Скачать

Глава 13

ДИСПЕРСИОННЫЙ АНАЛИЗ (ANOVA)

НАЗНАЧЕНИЕ И ОБЩИЕ ПОНЯТИЯ ANOVA1

Общепринятое сокращенное обозначение дисперсионного анализа — ANOVA (от англоязычного ANalysis Of VAriance). В соответствии с принятой классификацией, ANOVA — это метод сравнения нескольких (более двух) выборок по признаку, измеренному в метрической шкале. Как и в случае срав­нения двух выборок при помощи критерия /-Стьюдента, ANOVA решает зада­чу сравнения средних значений, но не двух, а нескольких. Кроме того, метод допускает сравнение выборок более чем по одному основанию — когда деле­ние на выборки производится по нескольким номинативным переменным, каждая из которых имеет 2 и более градаций.

ПРИМЕР

Исследовалось влияние на продуктивность воспроизведения вербального матери­ала (Y): а) интервала между 5 повторениями х — 3 градации: 1 — 0 мин, 2 — 3 мин, 3 — 10 мин) и б) трудность материала 22 градации: 1 — легкий, 2 — трудный).

Структура данных:

№..

Л", (интервал)

Хг (объем)

/(эффективность воспроизведения)

1

1

2

8

2

3

2

9

3

2

1

4

4

1

1

5

N

2

2

6

1 В данной главе содержатся лишь самые необходимые сведения о дисперсионном анализе. Более полное изложение особенностей применения этого мощного и многогранного метода читатель может найти в других источниках, например, в кн.: Гусева А. Н. Дисперсионный ана­лиз в экспериментальной психологии. М,, 2000.

185

Часть II. Методы статистического вывода: проверка гипотез

Специфика ANOVA проявляется в двух отношениях: во-первых, этот ме­тод использует терминологию планирования эксперимента; во-вторых, для сравнения средних значений анализируются компоненты дисперсии изучае­мого признака.

ANOVA был разработан Р. Фишером специально для анализа результа­тов экспериментальных исследований. Соответственно, различные вари­анты ANOVA воспроизводят наиболее типичные планы организации эксперимента.

Типичная схема эксперимента сводится к изучению влияния независимой переменной (одной или нескольких) на зависимую переменную. Независи­мая переменная (Independent Variable) представляет собой качественно опреде­ленный (номинативный) признак, имеющий две или более градации. Каж­дой градации независимой переменной соответствует выборка объектов (испытуемых), для которых определены значения зависимой переменной. Не­зависимая переменная еще называется фактором (Factor), имеющим несколь­ко градаций (уровней). Зависимая переменная (Dependent Variable) в экспери­ментальном исследовании рассматривается как изменяющаяся под влиянием независимых переменных. В модели ANOVA зависимая переменная должна быть представлена в метрической шкале. В простейшем случае независимая переменная имеет две градации, и тогда задача сводится к сравнению двух выборок по уровню выраженности (средним значениям) зависимой пере­менной.

В зависимости от соотношения выборок, соответствующих разным града­циям (уровням) фактора, различают два типа независимых переменных (фак­торов). Градациям (уровням) межгруппового фактора соответствуют незави­симые выборки объектов. Градациям (уровням) внутригруппового фактора соответствуют зависимые выборки, чаще всего повторные измерения зави­симой переменной на одной и той же выборке.

В зависимости от типа экспериментального плана выделяют четыре основ­ных варианта ANOVA: однофакторный, многофакторный, ANOVA с повтор­ными измерениями и многомерный ANOVA. Каждый из этих вариантов дис­персионного анализа будет подробно рассмотрен далее в этой главе, а сейчас ограничимся их краткой характеристикой.

Однофакторный ANOVA (One-Way ANOVA) используется при изучении вли­яния одного фактора на зависимую переменную. При этом проверяется одна гипотеза о влиянии фактора на зависимую переменную.

Многофакторный (двух-, трех-, ... -факторный) ANOVA (2-Way, 3-Way... ANOVA) используется при изучении влияния двух и более независимых пере­менных (факторов) на зависимую переменную. Многофакторный ANOVA позволяет проверять гипотезы не только о влиянии каждого фактора в от­дельности, но и о взаимодействии факторов. Так, для двухфакторного ANOVA проверяются три гипотезы: а) о влиянии одного фактора; б) о влиянии друго­го фактора; в) о взаимодействии факторов (о зависимости степени влияния одного фактора от градаций другого фактора).

186

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]