
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 12. Непараметрические методы сравнения выборок
Шаг 5. Определяется /?-уровень значимости. Хотя сравниваются 3 выборки, но объем одной из них больше 5, поэтому вычисленное Я сравнивается с табличным значением х2 (приложение 4) для числа степеней свободы df— 3 — 1—2. Эмпирическое значение Я находится между критическими для р = 0,05 и р = 0,01. Следовательно, р < 0,05.
Ш а г 6. Принимается статистическое решение и формулируется содержательный вывод. На уровне а = 0,05 гипотеза Но отклоняется. Содержательный вывод: сравниваемые выборки различаются статистически достоверно по уровню выраженности признака (р < 0,05).
Отметим, что на основании такой проверки мы не можем сделать конкретный вывод о направлении различий и о том, в какой выборке признак принимает большие или меньшие значения. Для этого необходимо парное соотнесение выборок по соответствующему критерию (£/-Манна-Уитни).
Обработка на компьютере: критерий я-Краскала-Уоллеса
Для обработки использованы данные примера 12.3. В таблице исходных данных (Data Editor) для каждого из 16 объектов определены значения двух переменных: varl — значения количественного признака, var2 — группирующая переменная, обозначающая принадлежность каждого объекта к одной из трех сравниваемых групп.
A) Выбираем Analyze > Nonparametric Tests > K-Independent Samples... (для ^-независимых выборок).
Б) В открывшемся окне диалога выделяем и переносим при помощи кнопки > из левого окна интересующие переменные в правое верхнее окно (Test Variable(s)) (в данном случае — varl); группирующую переменную, которая делит выборку на подгруппы (Grouping Variable) (в данном случае — var2). Нажимаем кнопку Define Range... и задаем диапазон градаций группирующей переменной (градации должны нумероваться подряд) — от минимума (Minimum) до максимума (Maximum) (в данном случае — от 1 до 3). Нажимаем Continue. Нажимаем ОК.
B) Получаем результаты в виде двух таблиц:
Ranks |
|||
|
VAR2 |
N |
Mean Rank |
VAR1 |
1.00 |
8 |
5.75 |
|
2.00 |
5 |
9.80 |
|
3.00 |
3 |
13.67 |
|
Total |
16 |
|
181
Часть II. Методы статистического вывода: проверка гипотез
Test Statistics(a,b)
|
VAR1 |
Chi-Square df Asymp. Sig. |
6.575 2 .037 |
a Kruskal Wallis Test
b Grouping Variable: VAR00006
В первой таблице содержатся ранговые статистики: средние ранги для каждой группы (Mean Rank). Во второй таблице содержатся результаты проверки гипотезы: эмпирическое значение критерия %2 (Chi-Square), число степеней свободы (df) и ^-уровень значимости (Asymp. Sig.).
Сравнение более двух зависимых выборок
Критерий %2-Фридмана (Friedman test) является непараметрическим аналогом однофакторного дисперсионного анализа (ANOVA) для повторных измерений. Он позволяет проверять гипотезы о различии более двух зависимых выборок (повторных измерений) по уровню выраженности изучаемого признака. Критерий х2-Фридмана может быть более эффективен, чем его метрический аналог ANOVA в случаях повторных измерений изучаемого признака на небольших выборках.
Критерий х2-Фридмана основан на ранжировании ряда повторных измерений для каждого объекта выборки. Затем вычисляется сумма рангов для каждого из условий (повторных измерений). Если выполняется статистическая гипотеза об отсутствии различий между повторными измерениями, то можно ожидать примерное равенство сумм рангов для этих условий. Чем больше различаются зависимые выборки по изучаемому признаку, тем больше эмпирическое значение %2-Фридмана.
Эмпирическое значение х2-Фридмана вычисляется после ранжирования ряда повторных измерений для каждого объекта по формуле:
где N — число объектов (испытуемых), к — количество условий (повторных измерений), Rt — сумма рангов для условия /.
При расчетах «вручную» для определения/г-уровня пользуются таблицами критических значений. Если к = 3, N> 9 или к > 3, N> 4, то пользуются обычной таблицей для %2, df= к — 1 (приложение 4). Если к = 3, N< 10 или к = 4,
182