- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Обработка на компьютере: критерий г-Вилкоксона
Для обработки использованы данные примера 12.2. Исходные данные для обработки введены в таблицу (Data Editor) в виде двух переменных: varl — «Условие 1»; var2 — «Условие 2».
А) Выбираем Analyze > Nonparametric Tests > 2-Related Samples... (Две зависимые выборки).
Б) В открывшемся окне диалога выделяем две переменные (соответствующие двум измерениям одного и того же признака) и переносим пару при помощи кнопки > из левого окна в правое окно (Paired Variables). Пар может быть несколько. Нажимаем ОК.
178
Глава 12. Непараметрические методы сравнения выборок
В) Получаем результаты в виде двух таблиц:
a VAR00004 < VAR00003 b VAR00004 > VAR00003 с VAR00004 = VAR00003
Test Statistics(b)
Ranks
a Based on negative ranks, b Wilcoxon Signed Ranks Test
В первой таблице содержатся ранговые статистики: средние ранги (Mean Rank) и суммы рангов (Sum of Ranks) для отрицательных (Negative Ranks) и положительных (Positive Ranks) сдвигов, а также количество одинаковых рангов (Ties). Во второй таблице содержатся результаты проверки гипотезы: эмпирическое значение ^-критерия (Z) и /^-уровень значимости (Asymp. Sig. (2-tailed)).
Сравнение более двух независимых выборок
Критерий IIКраскала-Уоллеса (Kruskal- Wallis H) является непараметрическим аналогом однофакторного дисперсионного анализа (ANOVA) для независимых выборок, поэтому другое его название — Однофакторный дисперсионный анализ Краскала-Уоллеса (Kruskal-Wallis one-way analysis of variance). Он позволяет проверять гипотезы о различии более двух выборок по уровню выраженности изучаемого признака.
Я-Краскала-Уоллеса по идее сходен с критерием £/-Манна-Уитни. Как и последний, он оценивает степень пересечения (совпадения) нескольких рядов значений измеренного признака. Чем меньше совпадений, тем больше различаются ряды, соответствующие сравниваемым выборкам. Основная идея критерия Я-Краскала-Уоллеса основана на представлении всех значений сравниваемых выборок в виде одной общей последовательности упорядоченных (ранжированных) значений, с последующим вычислением среднего ранга для
179
Часть II. Методы статистического вывода: проверка гипотез
каждой из выборок. Если выполняется статистическая гипотеза об отсутствии различий, то можно ожидать, что все средние ранги примерно равны и близки к общему среднему рангу.
Эмпирическое значение критерия Я-Краскала-Уоллеса вычисляется после ранжирования всех значений сравниваемых выборок по формуле:
Н =
12
#2
(12.2)
где N— суммарная численность всех выборок; к — количество сравниваемых выборок; Rj — сумма рангов для выборки /; п{ — численность выборки /. Чем сильнее различаются выборки, тем больше вычисленное значение Я и тем меньше/7-уровень значимости.
При расчетах «вручную» для определения /ьуровня пользуются таблицами критических значений. Если объем каждой выборки больше 5 и количество выборок больше трех, то эмпирическое значение критерия сравнивается с х2 (приложение 4) для df= k—\ (к — число выборок). Если сравниваются 3 выборки и объем каждой выборки меньше 5, то пользуются таблицей критических значений Я-Краскала-Уоллеса (приложение 12).
При отклонении нулевой статистической гипотезы об отсутствии различий принимается альтернативная гипотеза о статистически достоверных различиях выборок по изучаемому признаку — без конкретизации направления различий. Для утверждений о том, что уровень выраженности признака в какой-то из сравниваемых выборок выше или ниже, необходимо парное соотнесение выборок по критерию U-Манна-Уитни.
ПРИМЕР 12.3
Проверим гипотезу о различии выборок 1, 2 и 3 на уровне а = 0,05:
Шаг 1. Значения выборок объединяются в один ряд, упорядоченный в порядке возрастания или убывания. Обозначается принадлежность каждого значения к той или иной выборке (строки 1 и 2).
Ш а г 2. Значения выборок ранжируются и выписываются отдельно ранги для каждой выборки (строки 3-6).
Ш а г 3. Вычисляются суммы рангов для каждой выборки и проверяется правильность расчетов. R} = 46; R2 =49; R^ = 41. Общая сумма рангов должна быть равна N(N+ l)/2 = 16x17/2 = 136. Равенство соблюдено.
Ш а г 4. Вычисляется Я по формуле 12.2:
180
