- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 12. Непараметрические методы сравнения выборок
ПРИМЕР 12.1 (продолжение)
П роверим гипотезу о различии выборок X (численностью т = 8) и К (численностью п = 8) на уровне а = 0,05:
1 |
Значения |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
19 |
2 |
Выборка |
X |
X |
Y |
X |
X |
X |
Y |
X |
X |
Y |
X |
Y |
Y |
Y |
Y |
Y |
3 |
Ранги |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
4 |
Ранги X |
1 |
2 |
|
4 |
5 |
6 |
|
8 |
9 |
|
11 |
|
|
|
|
|
5 |
Ранги Y |
|
|
3 |
|
|
|
7 |
|
|
10 |
|
12 |
13 |
14 |
15 |
16 |
Ш а г 5. Определяется/7-уровень значимости: наименьшее из f/сравнивается с табличным (приложение 9) для соответствующих объемов выборки т = 8 и п = 8. Значение р < 0,05 (0,01), если вычисленное £/энп < £/табл В нашем случае наименьшим является Uy = 10, которое и принимается за эмпирическое значение критерия. Оно меньше критического для р = 0,05 (U= 13) , но больше критического для р = 0,01 (U=7). Следовательно,/? < 0,05.
Ш а г 6. Принимается статистическое решение и формулируется содержательный вывод. На уровне а = 0,05 принимается статистическая гипотеза о различии Xи Y по уровню выраженности признака. Уровень У статистически достоверно выше уровня Х(р< 0,05).
Замечание. Связи в рангах для вычислений «вручную» не предусмотрены. Хотя они и незначительно влияют на результат, но если доля одинаковых рангов по одной из переменных велика, то предлагаемый алгоритм неприменим, пользуйтесь компьютерной программой (SPSS, Statistica).
Обработка на компьютере: критерий (7-Манна-Уитни
Для обработки использованы данные примера 12.1. В таблице исходных данных (Data Editor) для каждого из 16 объектов определены значения двух переменных: varl — значения количественного признака, var2 — бинарная группирующая переменная, обозначающая принадлежность каждого объекта к одной из двух групп.
А) Выбираем Analyze > Nonparametric Tests > 2-Independent Samples... (Две независимые выборки).
175
ЧАСТЬ Л. МЕТОДЫ СТАТИСТИЧЕСКОГО ВЫВОДА: ПРОВЕРКА ГИПОТЕЗ
Б) В открывшемся окне диалога выделяем и переносим при помощи кнопки > из левого окна интересующие переменные (в данном случае varl) в правое верхнее окно (Test Variable(s)); группирующую переменную (в данном случае var2), которая делит выборку на подгруппы (Grouping Variable). Нажимаем кнопку Define Groups... и задаем номера градаций группирующей переменной, которые мы хотим сравнить (1 и 2). Нажимаем Continue. Нажимаем ОК.
В) Получаем результаты в виде двух таблиц:
Ranks |
|
|
|
|
|
VAR2 |
N |
Mean |
Rank |
Sum of |
Ranks |
VAR1 1.00 2.00 Total |
8 8 16 |
5. 11 |
75 .25 |
46. 90. |
00 00 |
Test Statistics(b) |
|
|
|
|
|
a
Not corrected for ties. b
Grouping Variable: VAR2
В первой таблице содержатся ранговые статистики: средние ранги для групп (Mean Rank) и суммы рангов (Sum of Ranks). Во второй таблице содержатся результаты проверки гипотезы: эмпирическое значение ^/-критерия (Mann-Whitney U) и/ьуровень значимости (Asymp. Sig. (2-tailed)).
СРАВНЕНИЕ ДВУХ ЗАВИСИМЫХ ВЫБОРОК
Самым чувствительным (мощным) аналогом критерия f-Стьюдента для зависимых выборок является критерий Т-Вилкоксона (Wilcoxon signed-rank test). Непараметрическим его аналогом является критерий знаков, который еще проще в вычислительном отношении, но обладает меньшей чувствительностью, чем критерий Г-Вилкоксона. Критерий Тоснован на упорядочивании величин разностей (сдвигов) значений признака в каждой паре его измерений (критерий знаков основан на учете только знака этой разности). Соответственно, критерий Т, будучи менее чувствительным аналогом /'-Стьюдента, более чувствителен по сравнению с другими непараметрическими критериями для повторных измерений (зависимых выборок).
176
