Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Nasledov 7-13.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.67 Mб
Скачать

Глава 12. Непараметрические методы сравнения выборок

равданным, если не выполняются исходные предположения, лежащие в ос­нове применения параметрического метода.

Условия, когда применение непараметрических методов является оправданным: П есть основания считать, что распределение значений признака в гене­ральной совокупности не соответствует нормальному закону;

  • есть сомнения в нормальности распределения признака в генеральной совокупности, но выборка слишком мала, чтобы по выборочному рас­ пределению судить о распределении в генеральной совокупности;

  • не выполняется требование гомогенности дисперсии при сравнении средних значений для независимых выборок.

На практике преимущество непараметрических методов наиболее заметно, когда в данных имеются выбросы (экстремально большие или малые значения).

Если размер выборки очень велик (больше 100), то непараметрические ме­тоды сравнения использовать нецелесообразно, даже если не выполняются некоторые исходные предположения применения параметрических методов. С другой стороны, если объемы сравниваемых выборок очень малы (10 и мень­ше), то результаты применения непараметрических методов можно рассмат­ривать лишь как предварительные.

Структура исходных данных и интерпретация результатов применения для параметрических методов и их непараметрических аналогов являются иден­тичными.

При сравнении выборок с использованием непараметрических критериев, как и в случае параметрических критериев, обычно проверяются ненаправлен­ные статистические гипотезы. Основная (нулевая) статистическая гипотеза при этом содержит утверждение об идентичности генеральных совокупностей (из которых извлечены выборки) по уровню выраженности изучаемого при­знака. Соответственно, при ее отклонении допустимо принятие двусторон­ней альтернативы о конкретном направлении различий в соответствии с вы­борочными данными. Для принятия статистического решения в таких случаях применяются двусторонние критерии и, соответственно, критические значе­ния для проверки ненаправленных альтернатив.

Перед знакомством с непараметрическими методами сравнения читателю необходимо ознакомиться с порядком и условиями применения их парамет­рических аналогов.

При выборе того или иного не параметрического метода сравнения выбо­рок можно руководствоваться таблицей классификации методов сравнения (см. рис. 8.2).

СРАВНЕНИЕ ДВУХ НЕЗАВИСИМЫХ ВЫБОРОК

Самым популярным и наиболее чувствительным (мощным) аналогом кри­терия f-Стьюдента для независимых выборок является критерий U-Манна-Уитни (Mann-Whitney U). Непараметрическим его аналогом является крите-

173

Часть II. Методы статистического вывода: проверка гипотез

рий серий (см. главу 8), который еще проще в вычислительном отношении, но обладает заметно меньшей чувствительностью, чем критерий U.

Эмпирическое значение критерия tZ-Манна-Уитни показывает, насколько совпадают (пересекаются) два ряда значений измеренного признака. Чем мень­ше совпадение, тем больше различаются эти два ряда. Основная идея критерия Uоснована на представлении всех значений двух выборок в виде одной общей последовательности упорядоченных (ранжированных) значений. Основной (нулевой) статистической гипотезе будет соответствовать ситуация, когда зна­чения одной выборки будут равномерно распределены среди значений другой выборки, то есть когда два ряда значений пересекаются в наибольшей возмож­ной степени. Напротив, отклонению этой гипотезы будет соответствовать си­туация, когда значения одной из выборок будут преобладать на одном из кон­цов объединенного ряда — пересечение двух рядов тогда будет минимальным.

ПРИМЕР 12.1

Обозначим значения переменной для одной выборки X, а для другой выборки — У и упорядочим значения обеих выборок по возрастанию.

Значения

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

Выборка

X

X

У

X

X

X

У

X

X

У

X

У

У

Y

У

У

Значения одной выборки распределены явно не равномерно среди значений дру­гой выборки: значения выборки У преобладают на правом конце объединенного ряда. Однако критерий серий не позволяет обнаружить статистически значимые различия: всего серий в данном случае W— 8 и при т = п = $ эта величина не выхо­дит за пределы критических значений для а = 0,05 (приложение 5).

Формально, критерий U— это общее число тех случаев, в которых значе­ния одной группы превосходят значения другой группы, при попарном срав­нении значений первой и второй групп. Соответственно, вычисляются два значения критерия: Ux и Uy.

Для вычислений «вручную» используются следующие формулы:

Uy =mn-Rv +■

2 Uy=mn-Ry+— -, (12.1)

Ux+ Uy = mn,

где п — объем выборки X; m — объем выборки У, Rx и Ry — суммы рангов для X и У в объединенном ряду. В качестве эмпирического значения критерия бе­рется наименьшее из Ux и Uy. Чем больше различия, тем меньше эмпирическое значение U.

Поскольку критерий U отражает степень совпадения (перекрещивания) двух рядов значений, то значениер-уровня тем меньше, чем меньше значение U. При расчетах «вручную» используют таблицы критических значений крите­рия £/-Манна-Уитни (приложение 9).

174

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]