
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 12. Непараметрические методы сравнения выборок
равданным, если не выполняются исходные предположения, лежащие в основе применения параметрического метода.
Условия, когда применение непараметрических методов является оправданным: П есть основания считать, что распределение значений признака в генеральной совокупности не соответствует нормальному закону;
есть сомнения в нормальности распределения признака в генеральной совокупности, но выборка слишком мала, чтобы по выборочному рас пределению судить о распределении в генеральной совокупности;
не выполняется требование гомогенности дисперсии при сравнении средних значений для независимых выборок.
На практике преимущество непараметрических методов наиболее заметно, когда в данных имеются выбросы (экстремально большие или малые значения).
Если размер выборки очень велик (больше 100), то непараметрические методы сравнения использовать нецелесообразно, даже если не выполняются некоторые исходные предположения применения параметрических методов. С другой стороны, если объемы сравниваемых выборок очень малы (10 и меньше), то результаты применения непараметрических методов можно рассматривать лишь как предварительные.
Структура исходных данных и интерпретация результатов применения для параметрических методов и их непараметрических аналогов являются идентичными.
При сравнении выборок с использованием непараметрических критериев, как и в случае параметрических критериев, обычно проверяются ненаправленные статистические гипотезы. Основная (нулевая) статистическая гипотеза при этом содержит утверждение об идентичности генеральных совокупностей (из которых извлечены выборки) по уровню выраженности изучаемого признака. Соответственно, при ее отклонении допустимо принятие двусторонней альтернативы о конкретном направлении различий в соответствии с выборочными данными. Для принятия статистического решения в таких случаях применяются двусторонние критерии и, соответственно, критические значения для проверки ненаправленных альтернатив.
Перед знакомством с непараметрическими методами сравнения читателю необходимо ознакомиться с порядком и условиями применения их параметрических аналогов.
При выборе того или иного не параметрического метода сравнения выборок можно руководствоваться таблицей классификации методов сравнения (см. рис. 8.2).
СРАВНЕНИЕ ДВУХ НЕЗАВИСИМЫХ ВЫБОРОК
Самым популярным и наиболее чувствительным (мощным) аналогом критерия f-Стьюдента для независимых выборок является критерий U-Манна-Уитни (Mann-Whitney U). Непараметрическим его аналогом является крите-
173
Часть II. Методы статистического вывода: проверка гипотез
рий серий (см. главу 8), который еще проще в вычислительном отношении, но обладает заметно меньшей чувствительностью, чем критерий U.
Эмпирическое значение критерия tZ-Манна-Уитни показывает, насколько совпадают (пересекаются) два ряда значений измеренного признака. Чем меньше совпадение, тем больше различаются эти два ряда. Основная идея критерия Uоснована на представлении всех значений двух выборок в виде одной общей последовательности упорядоченных (ранжированных) значений. Основной (нулевой) статистической гипотезе будет соответствовать ситуация, когда значения одной выборки будут равномерно распределены среди значений другой выборки, то есть когда два ряда значений пересекаются в наибольшей возможной степени. Напротив, отклонению этой гипотезы будет соответствовать ситуация, когда значения одной из выборок будут преобладать на одном из концов объединенного ряда — пересечение двух рядов тогда будет минимальным.
ПРИМЕР 12.1
Обозначим значения переменной для одной выборки X, а для другой выборки — У и упорядочим значения обеих выборок по возрастанию.
Значения |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
19 |
Выборка |
X |
X |
У |
X |
X |
X |
У |
X |
X |
У |
X |
У |
У |
Y |
У |
У |
Значения одной выборки распределены явно не равномерно среди значений другой выборки: значения выборки У преобладают на правом конце объединенного ряда. Однако критерий серий не позволяет обнаружить статистически значимые различия: всего серий в данном случае W— 8 и при т = п = $ эта величина не выходит за пределы критических значений для а = 0,05 (приложение 5).
Формально, критерий U— это общее число тех случаев, в которых значения одной группы превосходят значения другой группы, при попарном сравнении значений первой и второй групп. Соответственно, вычисляются два значения критерия: Ux и Uy.
Для вычислений «вручную» используются следующие формулы:
Uy =mn-Rv +■
2 Uy=mn-Ry+— -, (12.1)
Ux+ Uy = mn,
где п — объем выборки X; m — объем выборки У, Rx и Ry — суммы рангов для X и У в объединенном ряду. В качестве эмпирического значения критерия берется наименьшее из Ux и Uy. Чем больше различия, тем меньше эмпирическое значение U.
Поскольку критерий U отражает степень совпадения (перекрещивания) двух рядов значений, то значениер-уровня тем меньше, чем меньше значение U. При расчетах «вручную» используют таблицы критических значений критерия £/-Манна-Уитни (приложение 9).
174