- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 11. Параметрические методы сравнения двух выборок
таты: М= 106; а = 15; N= 36. Исследователя интересовало, превышает ли интеллект воспитанников детдома нормативный показатель А = 100. Для принятия статистического решения был определен уровень а = 0,05.
Ш а г 1. Вычисляем по формуле 11.2 эмпирическое значение критерия и число степеней свободы: £,= 2,4; df= 35.
Ш а г 2. Определяем по таблице критических значений критерия f-Стьюдента (приложение 2) /^-уровень значимости. Для df= 35 эмпирическое значение находится между критическими для р = 0,05 яр = 0,01. Следовательно, р < 0,05.
Ш а г 3. Принимаем статистическое решение и формулируем вывод. Статистическая гипотеза о равенстве среднего значения заданной величине отклоняется. Интеллект воспитанников детдома (М— 106; а= 15; N= 36) статистически достоверно превышает нормативный показатель интеллекта А = \00(р< 0,05).
КРИТЕРИЙ Г-СТЬЮДЕНТА ДЛЯ НЕЗАВИСИМЫХ ВЫБОРОК
Метод позволяет проверить гипотезу о том, что средние значения двух генеральных совокупностей, из которых извлечены сравниваемые независимые выборки, отличаются друг от друга. Допущение независимости предполагает, что представители двух выборок не составляют пары коррелирующих значений признака. Это предположение нарушилось бы, если, например, 1-я выборка состояла из мужей, а 2-я — из их жен, и два ряда значений измеренного признака могли бы коррелировать.
Проверяемая статистическая гипотеза Но: Мх = М2. При ее отклонении принимается альтернативная гипотеза о том, что Мх больше (меньше) Мг.
Исходные предположения для статистической проверки:
П одна выборка извлекается из одной генеральной совокупности, а другая выборка, независимая от первой, извлекается из другой генеральной совокупности;
распределение изучаемого признака и в той, и в другой выборке при близительно соответствует нормальному;
дисперсии признака в двух выборках примерно одинаковы (гомогенны).
Структура исходных данных: изучаемый признак измерен у объектов (испытуемых), каждый из которых принадлежит к одной из двух сравниваемых независимых выборок.
Ограничения: распределения признака и в той, и в другой выборке существенно не отличаются от нормального; в случае разной численности сравниваемых выборок их дисперсии статистически достоверно не различаются (проверяется по критерию F-Фишера — при вычислениях «вручную», по критерию Ливена — при вычислениях на компьютере).
165
Часть II. Методы статистического вывода: проверка гипотез
Альтернатива методу: непараметрический критерий £/-Манна-Уитни — если распределение признака хотя бы в одной выборке существенно отличается от нормального и (или) дисперсии различаются статистически достоверно.
Формулы для эмпирического значения критерия ^-Стьюдента:
df = Nl+N2-2.
Формула (11.3) применяется для приближенных расчетов, для близких по численности выборок, а формула (11.4) — для точных расчетов, когда выборки заметно различаются по численности.
ПРИМЕР 11.3
Предположим, изучалось различие в интеллекте студентов 1-го и 5-го курсов. Для этого случайным образом были отобраны 30 студентов 1 курса и 28 студентов 5 \кур-са, у которых интеллект определялся по одной и той же методике. Были получены следующие результаты:
Гипотеза о различии интеллекта проверялась на уровне а = 0,05.
Ш а г 1. Вычисляем эмпирическое значение критерия /-Стьюдента по формуле 11.3: /э= 2,06 (по формуле 11.4: Гэ= 2,17); df= 56.
Ш а г 2. Определяем по таблице критических значений критерия f-Стьюдента (приложение 2) /7-уровень значимости. Для df= 56 эмпирическое значение находится между критическими для р = 0,05 ир = 0,0\. Следовательно, р < 0,05.
Ш а г 3. Принимаем статистическое решение и формулируем вывод. Статистическая гипотеза о равенстве средних значений отклоняется. Вывод: интеллект студентов 5 курса статистически достоверно выше, чем у студентов 1 курса (р < 0,05).
166
