
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Часть II. Методы статистического вывода: проверка гипотез
сначала перейти от г-Спирмена к т-Кендалла (или наоборот), а затем проверить другие возможные причины недостоверности связи.
Нелинейность связи: просмотреть график двумерного рассеивания. Если связь не монотонная, то делить выборку на части, в которых связь мо нотонная, или делить выборку на контрастные группы и далее сравни вать их по уровню выраженности признака.
Неоднородность выборки: просмотреть график двумерного рассеивания. Попытаться разделить выборку на части, в которых связь может иметь разные направления.
Если связь статистически достоверна, то прежде, чем делать содержательный вывод, следует исключить возможность наличия «ложной» корреляции, как следствия влияния третьей переменной (см. Замечания к применению метрических коэффициентов корреляции).
АНАЛИЗ КОРРЕЛЯЦИОННЫХ МАТРИЦ
Корреляционная матрица. Часто корреляционный анализ включает в себя изучение связей не двух, а множества переменных, измеренных в количественной шкале на одной выборке. В этом случае вычисляются корреляции для каждой пары из этого множества переменных. Вычисления обычно проводятся на компьютере, а результатом является корреляционная матрица.
Корреляционная матрица (Correlation Matrix) — это результат вычисления корреляций одного типа для каждой пары из множества Р переменных, измеренных в количественной шкале на одной выборке.
ПРИМЕР
Предположим, изучаются связи между 5 переменными (vl, v2,..., v5; P= 5), измеренными на выборке численностью N=30 человек. Ниже приведена таблица исходных данных и корреляционная матрица.
Исходные данные:
Корреляционная матрица:
156
Глава 10. Корреляционный анализ
Корреляционная матрица является квадратной: число строк и столбцов равно числу переменных. Она симметрична относительно главной диагонали, так как корреляция х с у равна корреляции у с х. На ее главной диагонали располагаются единицы, так как корреляция признака с самим собой равна единице. Следовательно, анализу подлежат не все элементы корреляционной матрицы, а те, которые находятся выше или ниже главной диагонали.
Количество коэффициентов корреляции, подлежащих анализу при изучении связей Рпризнаков определяется формулой: Р(Р- 1)/2. В приведенном выше примере количество таких коэффициентов корреляции 5(5 — 1)/2 = 10.
Основная задача анализа корреляционной матрицы — выявление структуры взаимосвязей множества признаков. При этом возможен визуальный анализ корреляционных плеяд — графического изображения структуры статистически значимых связей, если таких связей не очень много (до 10—15). Другой способ — применение многомерных методов: множественного регрессионного, факторного или кластерного анализа (см. раздел «Многомерные методы...»). Применяя факторный или кластерный анализ, можно выделить группировки переменных, которые теснее связаны друг с другом, чем с другими переменными. Весьма эффективно и сочетание этих методов, например, если признаков много и они не однородны.
Сравнение корреляций — дополнительная задача анализа корреляционной матрицы, имеющая два варианта. Если необходимо сравнение корреляций в одной из строк корреляционной матрицы (для одной из переменных), применяется метод сравнения для зависимых выборок (с. 148—149). При сравнении одноименных корреляций, вычисленных для разных выборок, применяется метод сравнения для независимых выборок (с. 147-148).
Методы сравнения корреляций в диагоналях корреляционной матрицы (для оценки стационарности случайного процесса) и сравнения нескольких корреляционных матриц, полученных для разных выборок (на предмет их однородности), являются трудоемкими и выходят за рамки данной книги. Познакомиться с этими методами можно по книге Г. В. Суходольского1.
Проблема статистической значимости корреляций. Проблема заключается в том, что процедура статистической проверки гипотезы предполагает однократное испытание, проведенное на одной выборке. Если один и тот же метод применяется многократно, пусть даже и в отношении различных переменных, то увеличивается вероятность получить результат чисто случайно. В общем случае, если мы повторяем один и тот же метод проверки гипотезы к раз в отношении разных переменных или выборок, то при установленной величине а мы гарантированно получим подтверждение гипотезы в ахк числе случаев.
Предположим, анализируется корреляционная матрица для 15 переменных, то есть вычислено 15(15—1)/2 = 105 коэффициентов корреляции. Для проверки гипотез установлен уровень а = 0, 05. Проверяя гипотезу 105 раз, мы пять раз (!) получим ее подтверждение независимо от того, существует ли связь на самом деле. Зная это и
Суходольский Г. В. Основы математической статистики для психологов. СПб., 1998. С. 299-302.
157