- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Глава 9. Анализ номинативных данных
Ш а г 2. Формулировка статистической гипотезы.
Проверим Но: с = b (ненаправленная гипотеза), при а = 0,05.
Отметим, что проверка гипотезы относительно других диагональных элементов
(Но: a =d) в данном случае не имеет смысла.
Шаг 3, Вычисление эмпирического значения критерия.
с-Ь 26-10
Ш а г 4. Определение /ьуровня (приложение 1).
Воспользуемся таблицей единичного нормального распределения:
а) находим в таблице теоретическое значение z, ближайшее меньшее к абсолютно му (без учета знака) эмпирическому значению гэ: ZT ~ 2,65;
б) определяем площадь под кривой справа от z?- P= 0,004;
в) вычисляем/^-уровень по формуле/) < 2Р: р < 0,008.
Ш а г 5. Принятие статистического решения и статистический вывод. На уровне а = 0,05 гипотеза Нц отклоняется. Содержательный вывод: доля лиц, выступающих против смертной казни после лекции статистически значимо увеличилась (z = 2,67; р < 0,008).
Обработка на компьютере: таблицы сопряженности (кросстабуляции)
Последовательность шагов не зависит от количества градаций и зависимости выборок. Указанные обстоятельства влияют только на то, какие из результатов следует принимать во внимание.
Исходные данные: значения двух номинативных переменных (2 и более градации), с одинаковым или разным числом градаций, определены на одной выборке объектов и представлены двумя столбцами — по одному для каждой из переменных.
Выбираем: Analyze (Метод) > Descriptive Statistics (Описательные статистики) > Crosstabs... (Таблицы сопряженности). В открывшемся окне диалога переносим одну из переменных справа в окно Строки (Row(s)), другую — в окно Столбцы (Column(s)), нажимаем кнопку Статистики (Statistics...).
Решаем: Если выборки независимые (без повторных классификаций), выбираем у}, отмечая его «флажком» (Chi-square). Если выборки зависимые: одна и та же номинативная переменная (2 градации) измерена дважды на данной выборке, то выбираем метод Мак-Нимара, отмечая его «флажком» (McNemar). Нажимаем (Continue). Нажимаем ОК.
Результаты
A) Сводка по обработанным объектам (Case Processing Summary) — сколь ко обработано (Valid), сколько пропущено (Missing), сколько всего (Total).
Б) Таблица сопряженности (Crosstabulation).
B) Таблица статистических результатов (Chi-Square Tests):
141
Часть 11. Методы статистического вывода: проверка гипотез
□ эмпирические значения критериев (Value);
П двусторонний /ьуровень для х2-Пирсона без поправки (с поправкой) на непрерывность (Pearson Chi-Square (Continuity Correction) — Asymp. Sig. (2-sided));
□ односторонний /^-уровень для направленных гипотез по Фишеру (Fisher's Exact Test — Exact Sig. (1-sided));
О двусторонний /^-уровень для критерия Мак-Нимара (McNemar Test — Exact Sig. (2-sided)).
Примечание. Если обрабатываются таблицы 2x2 с независимыми классификациями, то при проверке направленных гипотез значение ^-уровня для //-Пирсона (Pearson Chi-Square — Asymp. Sig. (2-sided)) делится на два, либо берется односторонний/^-уровень (Exact Sig. (I-sided)) для точного критерия Фишера (Fisher's Exact Test).
АНАЛИЗ ПОСЛЕДОВАТЕЛЬНОСТИ: КРИТЕРИЙ СЕРИЙ
Как следует из названия, метод применяется для анализа последовательности объектов (явлений, событий), упорядоченных во времени или в порядке возрастания (убывания) значений измеренного признака. Кроме того, метод требует представления последовательности в виде бинарной переменной — как чередования событий 0 и 1. Поэтому исходные донные, как правило, требуют преобразования: упорядочивания (по времени или по уровню) и приведения к бинарному виду.
Математическая идея критерия основана на подсчете числа серий в упорядоченной последовательности событий двух типов, например, 0 и 1. Серия — это последовательность однотипных событий, непосредственно перед и после которой произошли события другого типа. Гипотеза Но о случайном распределении событий 1 среди событий 0 может быть отклонена, если количество серий либо слишком мало, либо слишком велико.
ПРИМЕР 9,7
Предположим, было получено две последовательности успехов (1) и неудач (0) для двух игроков. Каждый из них играл 20 раз с равным количеством выигрышей (п = 10) и проигрышей (т = 10): п + т = 20.
Игрок № 1: 100000000111111011! 0 —число серий W= 6 Игрок №2: 01010010101011010011- число серий W= 16 В отношении первого игрока Но будет отклонена, если число серий слишком мало, а в отношении второго игрока — если число серий слишком велико. При отклонении Но для первого игрока может быть сделан вывод о том, что достоверно чаще после успеха следует успех, а после проигрыша — проигрыш, а для второго игрока, что после проигрыша достоверно чаще следует выигрыш, и наоборот.
142
