
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Часть II. Методы статистического вывода: проверка гипотез
Теоретические |
^(политический лидер) |
|
|||||
частоты |
1 |
2 |
3 |
4 |
5 |
Всего: |
|
ЛГ (пол) |
муж.(1) |
7,77 |
17,97 |
14,09 |
6,31 |
4,86 |
51 |
жен. (2) |
8,23 |
19,03 |
14,91 |
6,69 |
5,14 |
54 |
|
Всего: |
16 |
37 |
29 |
13 |
10 |
105 |
Ш а г 3. Определяем р-уровень по таблице критических значений у^-Пирсона и принимаем статистическое решение. Для df= 4 наше эмпирическое значение располагается между критическими для р — 0,05 и/? = 0,01. Следовательно, ^-уровень в нашем случае р < 0,05. Мы можем отклонить Но.
Ш а г 4. Формулируем содержательный вывод. Обнаружена статистически значимая зависимость политических предпочтений от пола (р < 0,05).
Порядок расчетов остается тем же для любого числа градаций того и другого признака, за исключением случая таблиц сопряженности 2x2. Для упро-
134
Глава 9. Анализ номинативных данных
тения арифметических расчетов может быть использована формула, эквивалентная формуле 9.2:
Обратим внимание, что при отклонении Н(} принимается альтернативная гипотеза о связи двух оснований классификации, которая проявляется по крайней мере для одной ячейки таблицы сопряженности. Но остается неизвестным то, в отношении каких именно ячеек таблицы сопряженности связь проявляется, а в отношении каких — не проявляется. Иными словами, возникает проблема множественных сравнений. И для дальнейшей конкретизации результатов необходим анализ соотношения 2-х долей или таблиц сопряженности 2x2.
Исследование связи пола и предпочтений политических лидеров (см. пример 9.4) может быть продолжено. Так, может быть дополнительно проверена гипотеза о том, что лидер № 2 предпочитается чаще мужчинами, чем женщинами. Тогда необходимо сравнивать эмпирическое распределение предпочтений мужчин и женщин (25:12) с равномерным распределением (13,5:13,5) — при помощи метода сопоставления эмпирического и теоретического распределений. Может быть также проверена гипотеза о том, что лидер № 2 чаще предпочитается мужчинами, а лидер № 3 — женщинами. Тогда необходимо сопоставить два эмпирических распределения: 25:12 и 10:19 — при помощи ана-
лиза таблиц сопряженности 2x2.
Таблицы сопряженности 2x2
Существует большое разнообразие различных ситуаций, когда по результатам исследования может быть построена таблица сопряженности 2x2. Их объединяет то, что объекты (испытуемые, события) классифицированы по двум основаниям, каждое из которых представляет собой дихотомию. Важно различать два варианта такой классификации объектов:
по двум различным дихотомическим основаниям — случай независимых выборок;
по одному и тому же дихотомическому основанию дважды (например, до и после воздействия) — случай зависимых выборок.
135
ЧАСТЬ П. МЕТОДЫ СТАТИСТИЧЕСКОГО ВЫВОДА: ПРОВЕРКА ГИПОТЕЗ
ПРИМЕРЫ
С лучай независимых выборок. Две группы больных известной численности по лучали курс лечения разными методами. Подсчитывалось число рецидивов за болевания в той и другой группе. Одна переменная — «методлечения» (1-й, 2-й), другая — «рецидив» (есть, нет).
Случай зависимых выборок. Подсчитывалось число тех, кто «за», и тех, кто «про тив» смертной казни: до и после убедительной лекции о введении моратория на смертную казнь. Одна переменная — «до лекции» («за», «против»), другая пере менная — «после лекции» («за», «против»).
Для независимых выборок применяется критерий х2-Пирсона, а для зависимых более адекватным является метод Мак-Нимара.