
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Часть II. Методы статистического вывода: проверка гипотез
АНАЛИЗ ТАБЛИЦ СОПРЯЖЕННОСТИ
Анализ таблиц сопряженности применяется для решения задач, которые могут быть сформулированы следующим образом:
1. Необходимо сравнить два (или более) распределения между собой.
Например, различаются ли мужчины и женщины по распределению предпочтений пяти политических лидеров?
2. Необходимо определить связь между двумя номинативными признака ми (между классификациями объектов по двум разным основаниям).
Например, связано ли соотношение предпочтений трех групп напитков (соки, лимонады, минеральные воды) с сезонностью (зима, весна, лето, осень)?
Нетрудно заметить, что эти задачи отличаются лишь словесными формулировками. Так, изучение связи между двумя номинативными переменными тождественно сравнению градаций одной номинативной переменной по распределению другой номинативной переменной.
Например, изучать сезонную зависимость предпочтений различных напитков — то же самое, что сравнивать сезоны по распределению предпочтений этих напитков. А изучать связь двух оснований классификации респондентов — по полу и по политической ориентации — то же самое, что сравнивать распределение мужчин и женщин по политической ориентации.
В подобных случаях подразумевается анализ таблиц сопряженности, в которых столбцы соответствуют сравниваемым распределениям (градациям одной номинативной переменной), а строки соответствуют градациям сравниваемых распределений (градациям другой номинативной переменной).
Формулировка проверяемой Но: классификация объектов (людей, событий) по одному основанию не зависит от их классификации по другому основанию.
Исходные данные: определена принадлежность каждого объекта выборки к одной из градаций первой номинативной переменной и к одной из градаций второй номинативной переменной. Иными словами, две номинативные переменные измерены на выборке объектов. Строки таблицы сопряженности соответствуют градациям одной номинативной переменной, столбцы — градациям другой номинативной переменной.
Если проверка содержательной гипотезы предполагает анализ таблицы сопряженности, то принципиальным является вопрос о размерности таблицы. Будем различать два случая:
П общий случай (число градаций хотя бы одного из признаков больше 2-х),
О частный случай: таблицы сопряженности 2x2 (по две градации для каждой переменной).
Эти случаи различаются как порядком расчетов, так и особенностями интерпретации.
132
Глава 9. Анализ номинативных данных Число градаций больше двух
По сравнению с анализом классификации, специфика применения критерия х2-Пирсона (формула 9.1) к таблицам сопряженности заключается в том, что теоретические частоты рассчитываются отдельно для каждой ячейки таблицы. Таким образом, число слагаемых в формуле 9.1 равно количеству ячеек таблицы сопряженности и равно Р = к-1, где к—число строк, /— число столбцов:
Формула для расчета теоретической частоты для ячейки /-строки иу'-столбца:
сумма частот во всех ячейках /-строки;^ — сумма частот во всех ячейках у-столбца; N— сумма частот всей таблицы сопряженности.
ПРИМЕР 9,4
Для каждого респондента репрезентативной выборки определены: а) пол; б) один из пяти предпочитаемых политических лидеров:
Эмпирические |
К(политический лидер) |
|
|||||
частоты |
1 |
2 |
3 |
4 |
5 |
Всего: |
|
*(пол) |
муж.(1) |
5 |
25 |
10 |
8 |
3 |
51 |
жен. (2) |
11 |
12 |
19 |
5 |
7 |
54 |
|
Всего: |
16 |
37 |
29 |
13 |
30 |
105 |
Проверяется содержательная гипотеза о зависимости политических предпочтений от пола.
Но: классификации объектов по двум основаниям являются независимыми (распределение объектов по полу не зависит от их распределения по предпочтениям политических лидеров). Проверяем Но на уровне а = 0,05.
Шаг 1. Составляем таблицу сопряженности для теоретических (ожидаемых) частот — с теми же полями, что и для таблицы эмпирических (наблюдаемых) частот. Рассчитываем значения теоретических частот для каждой ячейки этой таблицы по формуле 9.3.
г 5Ы6 ___ для ячейки Cxb.yi) Л " '
.fl<.
для ячейки (хх, у2) Л =
для ячейки
i,
>>з)
Л = 1Qg
=
14,09;
133