
- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Часть II. Методы статистического вывода: проверка гипотез
Но: эмпирическое распределение соответствует теоретическому равномерному распределению. Задача сводится к сопоставлению эмпирического распределения с идентичным по общей численности, но равномерным теоретическим (ожидаемым) распределением:
Политические лидеры |
Распределение предпочтений: |
|
эмпирическое |
теоретическое |
|
1 |
21 |
24 |
2 |
37 |
24 |
3 |
29 |
24 |
4 |
15 |
24 |
5 |
18 |
24 |
Всего |
120 |
120 |
По формуле 9.1 число слагаемых Р= 5, к = 5, 1—2, df= 4.
По формуле 9.1 число слагаемых Р= 5, к = 5, 1—2, df= 4.
2_(21-24)2 | (37-24)2 | (29-24)2 j (15-24)2 ] (18-24)2 _ т 24 24 24 24 24 '
По таблице критических значений теоретического распределения х2-Пирсона (Приложение 4) для df- 4 видим, что наше эмпирическое значение %2Э меньше критического значения для р = 0,01. Следовательно, в соответствии со схемой определенияр-уровня для данного случая р < 0,01. Так как/? < а, то принимаем статистическое решение: отклоняется нулевая гипотеза о соответствии распределения предпочтений в генеральной совокупности равномерному распределению. Таким образом, корректен следующий содержательный вывод: обнаружены различия в предпочтениях потенциальными избирателями пяти политических лидеров (р < 0,01).
Отметим, что в этом случае, отклоняя Но, мы принимаем альтернативную гипотезу о том, что распределение предпочтений является неравномерным. Но альтернативная гипотеза не содержит и не может содержать утверждения о том, что в какой-то конкретной ячейке наблюдений больше, а в какой-то меньше. Любая конкретизация этого утверждения будет некорректной. Для утверждений о том, что в какой-то ячейке (градации) наблюдений больше или меньше, необходима дополнительная статистическая проверка.
Например, на первый взгляд справедливое утверждение о том, что лидер № 2 предпочитается чаще, чем лидер № 3 (пример 9.3), при дополнительной статистической проверке не подтверждается. Сравнение распределения 37:29 с ожидаемым равномерным распределением 33:33 дает: х2э- 0,970; df= 1. Величина эмпирического значения критерия меньше критического значения для df— 1, р = 0,1 (эмпирическое значение располагается левее критического значения критерия для р — 0,1). Следовательно, в данном случае р > 0,1, Но не отклоняется: не обнаружены различия в предпочтениях двух политических лидеров (р > 0,1).
Подобная проблема множественных сравнений возникает всегда, если нулевая гипотеза содержит утверждение о равенстве более чем двух величин, При ее отклонении принимается альтернативная гипотеза, содержащая изрядную долю неопределенности: сравниваемые величины не тождественны. Для кон-
130
Глава 9. Анализ номинативных данных
кретизации этого утверждения необходимы, как правило, парные сравнения величин, в отношении которых проверяется гипотеза.
Обработка на компьютере: критерий согласия у}
Исходные данные:значения номинативной переменной (более 2-х градаций) определены для каждого члена выборки и представлены одним столбцом.
Выбираем; Analyze (Метод) > Nonparametric tests (Непараметрические методы) > Chi-square... (Хи-квадрат). В открывшемся окне диалога переносим необходимую переменную из левого в правое окно (Test Variable List), переменных может быть несколько.
Если теоретическое распределение является равномерным, то нажимаем ОК и получаем результаты.
Если теоретическое распределение не является равномерным, то необходимо задать ожидаемые (теоретические) пропорции (доли) для каждой градации (сумма долей должна быть равна 1). Для этого вместо Expected Values: All categories equal (Ожидаемые значения: все категории тождественны) отмечаем точкой Expected Values: Values (Значения). После этого вводим ожидаемую долю для наименьшей категории, затем нажимаем Add (Добавить), затем вводим долю для наименьшей из оставшихся категорий, и т. д. — до последней категории. Последовательность значений долей появится в нижнем окне. Нажимаем ОК и получаем результаты.
Результаты (для данных примера 9.3)
А) Таблица частот (Frequencies)
var
|
Observed N |
Expected N |
Residual |
1.00 |
21 |
24.0 |
-3.0 |
2.00 |
37 |
24.0 |
13.0 |
3 .00 |
29 |
24.0 |
5.0 |
4.00 |
15 |
24.0 |
-9.0 |
5.00 |
18 |
24.0 |
-6.0 |
Total |
120 |
|
|
Observed — эмпирические частоты, Expected — теоретические частоты. В) Результаты статистической проверки (Test statistics):
Test Statistics
|
Y |
Chi-Square{a) df Asymp. Sig. |
13.333 4 .010 |
a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 24.0.
Chi-square — значение %l\ Asymp. Sig. — /^-уровень значимости.
131