- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Часть 11. Методы статистического вывода: проверка гипотез
Ш а г 2. Выбираем для принятия статистического решения а = 0,05.
Ш а г 3. Составляем таблицу эмпирических и теоретических частот и вычисляем эмпирическое значение критерия.
|
Распределения: |
|
|
эмпирическое |
теоретическое |
Мальчики |
5 |
10,4 |
Девочки |
15 |
9,6 |
Сумма: |
20 |
20 |
Задача сводится к сопоставлению эмпирического распределения 5:15 с идентичным по общей численности теоретическим распределением (0,52:0,48). Следовательно:
Подставляем эти значения в формулу 9.1:
(/э), = 5; (Л)2 = 15; (£), = 10,4; (fr)2 = 9,6. Подставляем эти значения в формулу 9.1:
Шаг 4. Определяем р-уровень. По таблице критических значений теоретического распределения х2-Пирсона (приложение 4) для df~ 1 видим, что наше эмпирическое значение Хэ находится между критическими значениями для/? = 0,05 \\р = 0,01. Следовательно, /; < 0,05.
Ш а г 5. Принимаем статистическое решение. Tax как/К а, то Но можно отклонить.
Шаг 6. Формулируем содержательный вывод. В индейских семьях этого города мальчики действительно рождаются достоверно реже, чем в целом по Англии (р < 0,05).
Обработка на компьютере: биномиальный критерий
Исходные данные: значения бинарной номинативной переменной (0, 1) определены для каждого члена выборки и представлены одним столбцом.
Выбираем: Analyze (Метод) > Nonparametric tests... (Непараметрические методы) > Binomial... (Биномиальный). В открывшемся окне диалога переносим необходимую бинарную переменную из левого в правое окно (Test Variable List), переменных может быть несколько.
Если теоретическое распределение является равномерным, то нажимаем ОК и получаем результаты.
Если теоретическое распределение не является равномерным, то необходимо задать ожидаемые (теоретические) пропорции (доли) для той градации, которая встречается в данных раньше. Для этого в окне Test proportion (Ожидаемая пропорция) вводим ожидаемую долю для градации. Нажимаем ОК и получаем результаты.
128
Глава 9. Анализ номинативных данных
Результаты (для данных примера 9.2)
Binomial Test
|
|
Category |
N |
Observed Prop. |
Test Prop. |
Exact Sig. (1-tailed) |
var Group 1 |
1.00 |
5 |
.25 |
.52 |
.013(a) |
|
Group 2 |
.00 |
15 |
.75 |
|
|
|
Total |
|
20 |
1.00 |
|
|
|
a Alternative hypothesis states that the proportion of cases in the first group < .52.
Observed Prop. — наблюдаемая доля для каждой категории (Category); Test Prop. — теоретическая доля для первой из категорий; Exact Sig. (1-tailed) — точное значение /ьуровня для односторонней альтернативы (направленной гипотезы).
Примечание. Если проверяется ненаправленная гипотеза, то полученное значение/7-уровня необходимо умножить на 2.
Более двух градаций
Как и в предыдущем случае, при сопоставлении нескольких градаций чаще всего проверяют гипотезу о том, различаются ли по численности соответствующие доли совокупности. Это соответствует задаче сопоставления эмпирического и равномерного теоретического распределения. Но ожидаемое (теоретическое) распределение может быть и любым другим: последовательность решения при этом не меняется. Для проверки подобных гипотез применяют критерий х,2-Пирсона (формула 9.1), который еще называют критерием согласия (эмпирического и теоретического распределений).
ПРИМЕР 9,3
С целью предсказания результатов выборов исследовалось предпочтение потенциальными избирателями пяти политических лидеров. По результатам опроса репрезентативной выборки из 120 респондентов была составлена таблица распределения их предпочтений:
Политические лидеры: |
1 |
2 |
3 |
4 |
5 |
Кол-во «поклонников»: |
21 |
37 |
29 |
15 |
18 |
Можно ли утверждать, что в совокупности всех потенциальных избирателей наблюдаются существенные различия в соотношении предпочтений пяти политических лидеров? Иначе говоря, отличается ли распределение предпочтений потенциальных избирателей от равномерного распределения?
Отметим, что в отношении данной группы респондентов ответ очевиден: да, предпочтения распределены явно не равномерно. Но вопрос при статистической проверке формулируется иначе: можно ли распространить этот вывод на генеральную совокупность, из которой извлечена данная выборка респондентов? Поскольку jV> 100, выбираем для принятия статистического решения а = 0,01.
129
