- •Глава 7
- •Часть II. Методы статистического вывода; проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода статистическое решение и вероятность ошибки
- •Глава 7- введение в проблему статистического вывода
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 7. Введение в проблему статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Связь Хи y Рис. 8.1. Классификация методов статистического вывода о связи двух явлений и зависимости от типа шкал, в которых они измерены
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода Анализ классификаций
- •Анализ таблиц сопряженности
- •Общий случай: число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Сравнение двух независимых выборок
- •Сравнение 2-х зависимых выборок
- •Глава 8. Выбор метода статистического вывода
- •Сравнение более двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 8. Выбор метода статистического вывода
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9
- •Часть II, методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Анализ классификации:
- •Распределений Две градации
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере: биномиальный критерий
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных Число градаций больше двух
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Независимые выборки
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Повторные измерения
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Часть 11. Методы статистического вывода: проверка гипотез
- •Глава 9. Анализ номинативных данных
- •Глава 9. Анализ номинативных данных
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 10. Корреляционный анализ
- •Глава 10. Корреляционный анализ
- •Глава 11
- •Глава II. Параметрические методы сравнения двух вы1юрок
- •Глава 11. Параметрические методы сравнения двух выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава II. Параметрические методы сравнения двух выборок критерий г-стьюдента для зависимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Обработка на компьютере
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава It. Параметрические методы сравнения двух выборок
- •Глава 12
- •Общие замечания
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий (7-Манна-Уитни
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий г-Вилкоксона
- •Глава 12. Непараметрические методы сравнения выборок
- •Сравнение более двух независимых выборок
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 12. Непараметрические методы сравнения выборок
- •Обработка на компьютере: критерий я-Краскала-Уоллеса
- •Часть II. Методы статистического вывода: проверка гипотез
- •Сравнение более двух зависимых выборок
- •Глава 12. Непараметрические методы сравнения выборок
- •Часть II. Методы статистического вывода: проверка гипотез Обработка на компьютере: критерий х2-Фридмана
- •Глава 13
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Однофакторный anova
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova) Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Обработка на компьютере
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
- •Глава 13. Дисперсионный анализ (anova)
- •Часть II. Методы статистического вывода: проверка гипотез
Часть II. Методы статистического вывода: проверка гипотез
Условия применения: а) признак /измерен в метрической шкале; б) дисперсии сравниваемых выборок гомогенны (статистически достоверно не различаются). Если не выполняется хотя бы одно из этих условий, то:
У— ранговая (порядковая) переменная: сравнение более двух зависимых выборок по уровню выраженности ранговой переменной (непараметрический критерий х2-Фридмана).
Ограничение: метод позволяет сравнивать зависимые выборки только по одному основанию — повторным измерениям.
Глава 9
АНАЛИЗ НОМИНАТИВНЫХ ДАННЫХ
Методы, о которых пойдет речь в этой главе, касаются проверки, по-видимому, самого широкого класса гипотез — в отношении тех явлений, измерения которых доступны в номинативной шкале.
ПРИМЕРЫ
Кто чаще обращается в службу знакомств: мужчины или женщины? Зависит ли количество аварий на производстве от дня недели? Можно ли утверждать, что водители-женщины чаще становятся участниками ДТП (дорожно-транспортных происшествий)?
Можно ли утверждать, что выигрыши в игре распределены не случайно среди проигрышей?
Данные для ответов на подобные обыденные и чисто академические вопросы могут быть получены при помощи простого способа — классификации событий и людей по интересующим градациям. И несмотря на, казалось бы, бесчисленное многообразие подобных ситуаций, все они могут быть сведены /с трем типичным случаям:
— сравнение наблюдаемого (эмпирического) распределения частот с ожи даемым (теоретическим) распределением;
—- сравнение двух или более наблюдаемых распределений частот;
— сравнение наблюдаемого распределения событий X среди событий Y (серий X, Y) со случайным распределением.
ПРИМЕРЫ
Случай I.
Кто чаще обращается в службу знакомств: мужчины или женщины? Для ответа на этот вопрос необходимо: а) подсчитать количество женщин и мужчин, обра тившихся в службу знакомств; б) воспользовавшись методом статистической проверки, сопоставить полученное эмпирическое соотношение мужчин и жен щин с ожидаемым (теоретическим) равномерным распределением.
Зависит ли количество аварий на производстве от дня недели? Проверка этого предположения требует выполнения сходных действий: а) подсчитать количе ство аварий для каждогодня недели за достаточно длительный промежуток вре-
123
Часть II, методы статистического вывода: проверка гипотез
мени; б) воспользовавшись методом статистической проверки, сопоставить полученное эмпирическое распределение количества аварий по дням недели с ожидаемым (теоретическим) равномерным распределением.
Случай П.
1. Зависит ли предпочтение напитка (минеральная вода, сок, лимонад) от сезона (зима, весна, лето, осень)? Для проверки этого предположения необходимо для каждого респондента определить тип предпочитае мого напитка (первая номинативная переменная, 3
градации) и сезон опроса (вторая номинативная переменная — 4 градации).
Зависит ли предпочтение одного из пяти кандида тов на выборах от пола потенциального избирате ля? Для проверки этого предположения необходи мо для каждого респондента определить пол (первая номинативная переменная, 2 градации) и предпо читаемого кандидата, одного из пяти (вторая номи нативная переменная, 5 градаций).
Повлияла ли рекламная кампания на выбор респондентами одного из двух товаров? Это предположение требует опроса респондентов на предмет предпоч тения одного из двух товаров дважды: до рекламной кампании (первая номина тивная переменная, две градации) и после нее (вторая номинативная перемен ная, те же две градации).
Для решения подобных задач, связанных с анализом классификаций или таблиц сопряженности, оказывается достаточным применение одного и того же критерия — у}-Пирсона:
где Р— количество ячеек таблицы распределения или сопряженности, содержащих эмпирические значения частот;/,,/. — эмпирическое и теоретическое значения частот для одной ячейки; к— число градаций сопоставляемых распределений; / — количество сопоставляемых распределений. Приведенная формула является общей для различных ситуаций, и в каждом случае ее применение обладает своей спецификой.
ПРИМЕРЫ
Случай III.
!. Является ли закономерным последовательный повтор выигрышей среди проигрышей в игре или это случайные совпадения?
В последовательности событий X и Y является ли закономерным их чередова ние (X после Y и наоборот)?
Наблюдается ли закономерность в чередовании быстрых и медленных реакций на некоторый стимул: имеютли они тенденцию к группированию или после мед ленной реакции следует быстрая (и наоборот)?
Для решения задач такого типа необходимо упорядочить события во времени и подсчитать число серий. Серия — это последовательность однотип-
124
